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ABSTRACT

The second AFSWC Hydrodynamic Conference was held at Kirtland Air
Force Base for the purpose of discussing numerical techniques which have
become an important and widely used tool for solving fluid flow problems,
A large number of the papers presented dealt with the problems of the finite
difference analogs of the differential equations of motion. A few papers
discussed work toward analytic solutions of these equations, Topics in-
cluded hydrodynamics, magnetohydrodynamics, radiation transport, and

solid material motion. (U)

The Proceedings are published in two parts: Part I is unclassified and
Part Il is classified, (U)

PUBLICATION REVIEW

This report has been reviewed and is approved,

AR A
JOHN J. DISHUCK

Colonel USAF
Deputy Chief of Staff for Operations
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WELCOMING ADDRESS

Col David R. Jones
Chief, Physics Division, AFSWC

I would like to welcome you to Kirtland on behalf of General McCorkle,

the Research Directorate, and the Physics Division,

This conference can very well be considered as the second AFSWC
Hydrodynamics Conference, The first was held in March of 1960, At that
time we were primarily concerned with the X-ray effects of a nuclear burst,
and needed to arrive at new levels of common understanding before embarking

on an integrated large-scale in-house and contractual research program.

'This year we are not concerning ourselves with an individual program,
but are attempting to discuss one aspect of a number of the Physics Division's
programs. This aspect is hydrodynamics. We have-chosen to concentrate on
numerical methods and techniques of hydrodynamics, but have included some
topics dealing with the physics involved and with non-numerical methods of

solution to these problems,

The overall purpose of this meeting should be toward the exchange of
methods and techniques of approaching and solving various problems, We
hope that the idea of a working meeting can be kept in mind and that impromptu

discussion of unresolved topics will flow freely,

Again, I repeat my welcome to Kirtland, and offer our services to you,

xiii
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ON THE TREATMENT OF RAREFACTION
USING A DISSIPATIVE HYDRODYNAMICS CODE

Gunning Butler, Jr., and Daniel M. Young

Boeing Airplane Company

One of the methods being used to study the response of materials to the
X-ray impulse is slapping the material with a thin flying plate. The Boeing
group working on this problem is accelerating the flyer plates by discharging
a condenser bank through a thin metallic foil and using the pressure de-
veloped in the exploded foil to accelerate the flyer. After the plate has moved
a sufficient distance it is essentially at initial density and moving with con-
stant velocity. When the plate impinges on the target material, a square
pressure pulse is generated in the material with a width equal to the time for
the resulting shock to travel back through the flyer plate and the rarefaction
from the free surface to travel back to the contact surface. As the shock
progresses into the target material it will develop into a normal triangular
shock because of rarefactions from the surface relieving the back of the pulse
and degrading the peak pressure.

In order to understand the details of these processes and the subsequent
details of the flow, a hydrodynamic code was developed at Boeing. The code
is based on the Richtmyer-Von Neumann method and the details of the code
are reported in the proceedings of the Air Force Special Weapons Center
Hydrodynamics Conference (AFSWC TR-60-12) which was held here about a
hear ago.

The manner in which a dissipative hydrodynamics code such as that of
Von-Neumann and Richtmyer1 or Ludford, Polachek, and Set.'.-gerz handles
one-dimensional shocks is well established and fully reported in the litera-

ture. The usual set of basic difference equation is

Un+1/2 n -2 n n-1¥ n n-14%
oo Y1 . Pt Qe Piow iy
o Atn Aa
n+l n ! n+‘1 n
E - E, n+ (v -V )
j*y?- J+VZ—_ n n+l/2 ’
" Vz(Pj+l/z+pj+l/z)+Qj+Vz j+Zzt j+ R
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and an equation of state
n+ 1 n+ 1 n+ 1

1:,j+1/z :f(Ej+l/z‘ Vj#—l//z)‘

For reference, the pertinent phenomenological features are shown in figure 1,
which is a synoptic view of a shock in terms of fluid particle velocity as cal-
culated by the Boeing hydrodynamics code and compared with the idealized
shock in a perfect fluid. The independent variable here is the L.agrangian
coordinate. One notes the spreading of the shock front by the code and the
oscillations or ripples induced in the flow after passage of the shock. Figure
2 shows the pressure time history of a mass-zone after the shock has passed.
It is well known that as the dissipation terms in the equations are increased in
magnitude, the amplitude of the oscillations is decreased and the shock thick-
ness is increased.

Originally it was decided to start the calculations by dumping the energy
based on the measurements of the current and voltage versus time into the
foil. However, it was not possible to treat this situation with sufficient
accuracy. The results of dumping the energy into the foil are extremely
sensitive to the equation of state of the foil. A series of runs was done in
which the foil was treated as an ideal gas and the peak pressures and peak
free-surface velocities varied quite widely with a small change in gamma,
This effort was then dropped because of lack of knowledge of the foil equation
of state. At the present time the input is taken as the flyer plate at normal
density and constant velocity at the time it impinges on the target, because
measurements of the flyer plate velocity are readily measurable and quite
reproducible. Also by using the flyer plate in motion as input, the equation
of state of the foil need not be known and only the equation of state of the flyer
over a relatively small pressure range is required.

The Boeing group is particularly interested in the mechanism of spall.
Spall occurs when a material is in tension. For this reason it is important
to know how a Von-Neumann-type code treats rarefactions. If these codes do
not handle rarefactions properly then there are problems in determining the

location of the maximum tension and its absolute magnitude. For this reason
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a series of numerical experiments on centered rarefactions has been conducted
at Boeing. Mr. Daniel M. Young will now present the results of these studies.
At the suggestion of Dr. John G. Trulio of the Lawrence Radiation Lab-

oratory, Livermore, the Boeing group has undertaken what can best be de-
scribed as a series of numerical experiments on simple centered waves using
the Boeing hydrodynamics code. The treatment of these types of flow by such
codes is of some interest, but does not seem to have been reported in the
literature, at least in the available recent and near-recent sources. For
normal materials, simple centered waves are rarefactions and are repre-
sented by similarity solutions of the equations of motion; i. e., the equations
are reduced to a set of ordinary differential equations which can be integrated
by standard methods. For certain equations of state such solutions are ex-
pressable in closed form.,

Simple centered waves are of interest primarily because they occur
frequently as integral parts of more complicated flow fields which require
a hydrodynamic code for solution. The manner in which a code handles
simple centered waves in cases where the solution is known should be in-
dicative to some exten: of the error introduced in the more complicated
flows which include them. This is particularly important when one is trying
to look at spall which is largely determined by crossing rarefactions. The
exact similarity solution representing a simple centered wave is presented
in figure 3 which is a synoptic view of a rarefaction moving into a medium at
rest. The material in this case has a Hooke's law equation of state. Both
pressure and particle velocity are shown as functions of the Lagrangian co-
ordinate.

If the dissipation terms ia the above set of difference equations are set
to zero and the sarme problem is calculated with the hydrodynamics code, the
results are those shown in figure 4. The features contrasting the analytical
and code solutions are the overshoot in the flow behind the wave and the
spreading of the wave over too wide a region. If the dissipation terms are
included in the calculation, the amplitude of the overshoot is markedly de-
creased but the spreading is increased, as is indicated in figure 5 which
shows the rarefaction wave both with and without dissipation. As in the case
of shock compressions, increasing the magnitude of the dissipation terms

enhances these effects, That this should be the case also for rarefactions is
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not altogether obvious, since for such flows the Von Neumann-Richtmyer
dissipation is negative, The inclusion of such terms, therefore, corresponds
to a physically unreal situation, since a negative dissipation implies violation
of the second law of thermodynamics. It should be recalled, however, that
the dissipation terms were originally introduced into the equations only as a
mathematical device, not as an attempt to simulate physical reality. The
magnitude of these terms required to allow the shock calculation to proceed
is greatly in excess of the real physical magnitude,

Figure 6 is a wave diagram in Lagrangian coordinates of the development
of a simple centered wave from a pressure discontinuity as computed by the
hydrodynamics code without dissipation. It resembles somewhat grossly the
early history of the development of a shock compression from a pressure
discontinuity, shown for comparison in figure 7. The effect of the dissipation
term is shown by the wave diagrams of figure 8. The parameter C is the
constant in the Richtmyer-Von Neumann dissipation term. Comparison with
the wave diagram of the analytical solution indicates that, as calculated by
the code, the head of the wave initially propagates too quickly and the tail
too slowly. Finally the wave settles down to a stable fan-shaped structure
with all parts traveling at their correct speeds. The center of the wave
seems to travel at the right speed from the beginning.

There seem, then, to be two problems associated with the treatment of
simple centered waves by dissipative-type hydrodynamic codes: (1) there is
a spurious overshoot and subsequent decaying ripple induced on *he flow
following the wave, which if the dissipative terms are small or ignored
completely, can be of significant magnitude; and (2) the trajectories of the
head and tail of the wave are incorrect because they are initially of the wrong
slope, a situation aggravated by increasing the dissipation.

Inspection of the details of the difference equations at the contact surface
across which the pressure discontinuity originally exists leads one to suspect
that some of the difficulty is the result of the way in which the velocity of
that surface is computed. The usual difference equation for the velocity of

a mass zone boundary is
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where the nomenclature is essentially that of Von Neumann and Richtmyer.
The customary way of handling a surface is to use this same form of differ-
ence equation. Letting Py denote the outside pressure on the boundary, the

equation for the velocity of the surface is

M+ on-lf n n-12
i T S g e (%)
at? 1/2p° Aa

where the boundary has been assumed to be on the right.

Actually the right hand side of the above equation (*) represents the
secant centered one quarter of a mass zone from the surface. For simplicity
consider the case where Py is zero. Then according to (*) the pressure in
the first zone adjacent to the surface must be completely relieved before the
acceleration of the surface will cease. Thus the velocity of the surface will
overshoot, a tension will develop to slow it down, etc. This effect will then
propagate along with the tail of the wave. The early history of the surface
velocity is shown in figure 9, It is interesting to note that when dissipation
is included, the magnitude of the initial overshoot is decreased as it should
be according to (*), since the dissipation term will always be opposite in
sign to the pressure difference for a rarefaction wave.

When, in the hydrodynamics code, the rarefaction is initiated by the
reflection of a shock wave from a free pressure boundary, it is not a simple
centered wave. The structure of the shock prevents the wave from being
centered. This is shown in figure 10, which is a wave diagram in Eulerian
coordinates of this process. However, since the resulting wave is not
centered, it is not liable to such violent overshoots in its formative stages
and one of the problems has been alleviated. The cost however, is a larger

error in the trajectories of the head and the tail,
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The effect of such errors in a rather simple problem is illustrated in
figure 11. The problem is that of an unstrained flyer plate impacting against
a semi-infinite slab of identical material. The quantities of interest are the
distance and time at which the rarefaction overtakes the shock, and the
trajectory and shape of the subsequently decaying shock pulse. The sort of
error that is prone to occur is too short a catch-up distance after which the
pulse calculated by the code continues to fall behind because of its early loss
of driving pressure. The effect of some of the program parameters upon the
results is shown in figure 12, The parameter to which the catch-up distance
is most sensitive is the dissipation constant C. The reason is, as has been
shown, that the smaller the dissipation the more accurately localized are
the waves. However, simultaneously the amplitudes tend to become rather
ill-defined because of the overshoots and subsequent oscillations in the flow
regions immediately following the waves,

It seems, then, that some care should be taken in interpreting the results
of problems calculated with dissipative hydrodynamics codes when simple
centered waves are features of the resulting flows. In particular, tension
regions following rarefactions should be examined by an independent method
to establish their validity. Also, if possible, catch-up distances should be
checked.
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Figure 6. Early history of development

of a rarefaction from a pressure discontinuity
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Figure 10. Rarefaction caused by shock reflection
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ANALYTIC METHODS AND APPROXIMATIONS OF MHD PROBLEMS

Dr. J. D. Cole
California Institute of Technology
and
Dr. C. Greifinger
The RAND Corporation

I. INTRODUCTION,

In recent years, largely because of the interest in controlled thermo-
nuclear reactions, many devices have been designed to accelerate gases to
thermonuclear energies (~10 kev). In the operation of most of these devices,
the gas is driven electromagnetically, it being possible in this manner to
achieve much higher gas velocities than by mechanical or gas-dynamic means.

In the usual mode of operation, electrical energy, stored in a charged
capacitor, is delivered to the apparatus containing the gas. The gas is
rapidly broken down by the applied voltage, and currents flow through it. A
magnetic field is thereby generated which interacts with the currents in the
gas and sets the gas into motion. Generally, the currents are confined to a
rather thin sheet at the boundary of the gas. The magnetic field then acts as
a piston, pushing the boundary inward and leaving behind a region of vacuum,
The boundary is preceded by a shock wave which compresses, ionizes, and
sets into motion the enveloped gas.

To analyze quantitatively the operation of such devices, it is obviously
necessary to make a number of simplifying approximations, the most common
of which are the following:

(a) idealization of the geometry of the apparatus,

(b) idealization of the physical properties of the gas,

(c) neglect of the reactiorr of the gas on the external circuit, and

(d) idealization of the mechanical properties of the gas.

The geometrical idealization always involves the neglect of end effects
and occasionally involves other idealizations, one of which will be illustrated
below in the analysis of the inverse pinch. Such approximations do not
usually impose serious limitations on the validity of the analysis, but merely
limit that validity to some, usually large, portion of the apparatus.
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The idealization of the physical properties of the gas generally consists
in the assumptions that the plasma is a nonviscous, non-heat-conducting,
ideal gas and that it has infinite electrical conductivity. These approxima-
tions limit the validity of the analysis to some range of operating conditions;
fortunately, under normal conditions, the devices to be discussed operate
well within the necessary range. This point is best illustrated by considering
in some detail the assumption of infinite conductivity.

The infinite conductivity approximation is equivalent to the assumption
that the currents in the plasma are confined to an infinitely thin sheet on the
boundary which excludes the driving magnetic field frum the plasma,
Actually however, because of the finite conductivity of the plasma, the field

diffuses into it. The diffusion distance & at a time t is roughly

v

5 ~ (1) (1)

B o
where o is the conductivity of the gas and . the permeability of free space.
For a shock of roughly constant speed c, the separation A of the shock

and the current carrying contact front is

A ~ (c - )t (2)
where u is the speed of the contact front. The density ratio across the shock
is

P

o _ u -1
= =1--= Lo (3)
p c y +1

where the last equality holds for a very strong shock in a perfect gas (y is
the usual ratio of specific heats). For a real gas (with partial dissociation
and ionization), (y - 1)/(y + 1) > 1/15, so that

A>}—5—ct. (4)

The approximation should be valid so long as (taking an average for )

_6_21_0.(___)%<1. (5)

1
A c p ot
If this is to apply to a shock traveling a distance D, thant ~ D/c and

- 10 (6)
& (po Dc)‘/z
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Thus, a magnetic Reynolds number R,, based on the dimensions of the

M
device and the shock speed must be fairly large,

Ry = poDc > 100, (7)
say. As a typical case, for a Mach 20 shock (10-ev temperature) progressing
through cold deuterium ¢ ~ 4 x 104 m/sec and ¢ ~ 6 x 104 mho/m, so that
the inequality required by equation (7) is well satisfied for dimensions D
greater than about 2 inches. The relevant dimension of all the devices to be
discussed is at least this large, so that the approximation may be expected
to apply rather well, |

The approximation of neglecting the reaction of the gas on the external
circuit is effected by replacing the external circuit by a boundary condition.
That is, the current through the gas, and hence the driving field, is taken to
be some prescribed function of time, and the dynamical equations of motion
are solved subject to this boundary condition. This essumption limits the
validity of the analysis to the time during which the prescribed current can
be maintained experimentally — usually not the entire period of operation.

It also involves a considerable loss of detail, such as, for example, the
division of energy at arbitrary times between magnetic field and mechanical
motion. If a detailed description of such physical quantities is desirable fo:
design or diagnostic purposes, the reaction must obviously be taken into
account,

The final approximation, that of idealizing the mechanical properties of
the gas, consists of replacing the full fluid dynamic equations by a single
equation based on some simplified mechanical model. One such model in
current use, the snowplow model, will be discussed below. Such idealizations
have the advantage of allowing a rather simple calculation of the gross dy-
namics of the gas enveloped by the shock. However, an analysis based on
this kind of simplification is clearly not capable of providing the detailed
description of the flow which is contained in a solution of the full equations.
The latter, unfortunately, cannot usually be solved analytically.

Of the assumptions discussed above, the first two are essentially un-
avoidable if any analytic results are to be obtained. Of the last two, at least
one must be made for the analysis to be tractable. If both (c) and (d) are

assumed, the analysis may become particularly simple while still yielding
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results which are quite adequate for many purposes. However, if quanti-
tative information is needed concerning the interrelation between gas and
circuit, the reaction of the gas must be included. The desired results may
then be obtained with somewhat more effort. Finally, there are special
cases where similarity solutions of the full fluid dynamic equations can be
obtained describing the flow in complete detail. To obtain these solutions,
it is again necessary to replace the external circuit by a boundary condition,
Moreover, the form of the boundary condition is no longer arbitrary; it is
determined by the form the solution must take.

Of course, in addition to the approximations described above, which are
of a more or less general nature, there are also those which are specific to
a particular device.

The points discussed above will now be illustrated by specific examples.

II. SNOWPLOW THEORY WITHOUT CIRCUIT REACTION,

As mentioned in the Introduction, the greatest analytical simplification
results when assumptions (c) and (d) are both made. A particularly useful
mechanical simplification is the so-called snowplow model, which was first
applied by Rosenbluth1 to the ordinary pinch effect. It is assumed, in this
model, that all the mass swept up by the shock is compressed into an in-
finitely thin layer immediately behind the shock, so that the contact front
and shock are the same interface. The motion of the interface is determined
from the principle that the time rate of change of momentum of the accumu-
lated mass is equal to the force on the interface.

It is interesting to note that snowplow theory can be derived from the full
gas-dynamic equations as the limit shock strength —e =, specific heat ratio
—=1, This limit is called Newtonian theoryz. The model should therefore
be a valid approximation for strong shocks in gases in which ionization and
dissociation are taking place, since the additional degrees of freedom pro-
vided by these processes result in a specific heat ratio which approaches
unity. It is clear that under these conditions the compression (y + 1)/(y -1)
becomes very large, as required by the theory.

In the devices to be analyzed below, the flow is approximately one-
dimensional; that is, the location of the shock at a time t is describable by a

single coordinate, X(t). If the mass of gas which has been swept up by the
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shock is denoted by M(t), the basic equation of snowplow theory can be

written

d dX ) -
dt (Mdt) F. (8)

where F is the force on the interface. This equation will now be used to
analyze the two devices known as inverse pinch3 and Scylla4.

A) Inverse pinch

A diagram of the apparatus for this device is shown in figure 1. A current
is passed through the gas and returns along the central conducting rod. This
current produces an azimuthal magnetic field which pushes the gas away from
the rod, leaving behind a cylindrical vacuum region. In such a device, the
gas can be pre-ionized, and an axial magnetic field produced by an external
solenoid can be trapped in the plasma region. The resulting shock wave will
then be a transverse magnetohydrodynamic one. This more general case
will in fact be considered.

The additional geometrical idealization will be made of replacing the
central rod by a line. This is done first because an exact solution of the re-
sulting equation can then be obtained, but mainly so that a comparison can be
made with the similarity solution of the same problem. In practice, the
solution thus obtained should become a good approximation to the flow at
distances from the rod of several times its radius.

If the plasma is initially at a uniform pressure Po and density Por

and in a uniform axial magnetic field of strength B, the accumulated mass

0.
per unit length of the sheath is

M= 1 poxz, (9)

where X is the distance of the sheath from the axis, while the net outward
pressure on the sheath is (mks units)

2 2 2
B B 2 B
P = e - Q - p = .“_1_ - 2. - P (10)
2p 2u ° 81[2 2u °

The {irst term on the right hand side of equation (10) is the magnetic pressure
of the aximuthal field B9 produced by the pinch current I, while the second
term is the magnetic pressure of the external field.
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SCHEMATIC DIAGRAM OF APPARATUS
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Figure 1. Diagram of apparatus for inverse pinch
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It is now necessary to make some assumption concerning the form of
I(t). Although under typical experimental conditions the current is usually
sinusoidal, the ringing time of the circuit can be made sufficiently long that
the current rises linearly over a large portion of the time of interest. If one
then assumes a linear pinch current, I = Io wt, and introduce as parameters
the sound speed a_ = (y Po/ po)l/z and the Alfven speed b = (Boz/p po)l/2 .
equation (8) with F = 2nXp becomes

2
d_ 2dX ., _ 4t - 2 2 2 ‘
at (X e x X(b0 +Yao) (11)
where
co= lu 12 uPan? o ) (12)

is a characteristic quantity with the dimensions of a speed. The solution of

equation (12) which passes through X(o) = 0 is

X = kt,
!
kz=i- b 2i&a?) [(b2+z-a2)z+8c4] /zg (13)
o Y o o Y o o
Thus, according to the theory, the front moves with the constant speed
dX = k.
dt

In the limit of strong shocks, where the snowplow theory should give

reasonably accurate results, aoz/co2 é ’< 1; and boz/cc'2 << 1; equation
(13) becomes

= ,-1/4 11/4
k=2 L Z—Z_— 2, Z_a ) (14)

‘From equation (14) and the definition of <, the scaling laws for the device are
obtained; the shock speed scales as the square root of the rate of current rise
and inversely as the fourth root of the density. A comparison of the snowplow
result (for a = bo = ,0) with experiments of Liepmann and Vlases12 is shown
in figure 2. The agreement is gopd indeed, verifying the scaling law with
respect to both current rise and initial density.

In addition to providing the scaling laws for the device, the theory also
provides a fair idea of the shock speeds to be expected under typical ex-
perimental conditions. For example, if the working gas is deuterium at
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SUMMARY OF PRESSURE PROBE DATA

with experiments of Liepmann and Vlases

27

Snowplow Theory: r =Tt
Qe Qz /e
v >
o0/ 0 ©
© q0
*
° Gas R ¢ ¢, observed |
© 96 o (mm.Hg) (cm./x sec) (cm./p sec.) |
o Argon 0.5 1.75 1.6
oo i ® Helium 0.5 3.12 3.1
y o Air 05 1.90 1.9
/ o Air 02 2.50 26
2 4 6 . 10
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Figure 2. Comparison of snowplow theory of inverse pinch
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100-y initial pressure and if the rate of current rise is 250 ka/p -sec, the
predicted shock speed is about 9 cm/ L -sec, again in good agreement with
experiment.

Finally, although the theoryv provides no information about the detail of
the flow, the internal energy in the gas may, within the framework of the
theory, still be calculated. This is the energy which is available to heat,
dissociate, and ionize the gas. The total energy per unit length, E(t), de-
livered to the gas in the time t is just the work done on it by the magnetic

piston, i. e.,

X(t) X(t)
- - d (MdX
E(t)-f F dX = / ar ( ot ) dx
o} (o]

X

2 2

= MEX) . M X dXx (15)

dt qt2

o

With the aid of equation (8) the last integral can be transformed to

X M

2
[ mEx-Ew- [ G au (16)
at?
Q o
so that finally M
2 2
Ew = b mE& *1 / 3% )% am (17)
(o]

The first term on the right-hand side of equation (17) is the kinetic energy of
the gas; the second term is the internal energy. Internal energy is thus
acquired at the rate of %‘ (%sg)z per unit mass. (The dissipative mechanism
responsible for the production of internal energy is the shock wave.) The
internal energy at any time depends on the history of the motion to that time,
whereas the kinetic energy depends only on the velocity at that instant. When,

as in the case under consideration, the velocity gii is constant, the in-
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tegral in equation (17) is trivially evaluated, and the internal energy is
evidently just equal to the kinetic energy. In such cases, then, there is

exact equipartition between kinetic and internal energy.

B) Scylla

In this device, shown in figure 3, the external circuit drives a circum-
ferential current around the outside of the cylindrical discharge tube. When
the switch is closed, the rising current induces an electric field which drives
a surface current around the gas, opposite in direction to the primary current.
The resulting magnetic field is axial, and drives the gas radially inward from
the wall, As in the case of the inverse pinch, such a device can be used to
generate magnetohydrodynamic shock waves if the gas has been pre-ionized
and an axial field established in it prior to the discharge. This will again be
the case considered.

If the azimuthal current per unit length is denoted by i, the driving axial

field is uniform between the current sheet and the outer wall, and is given by

Bz = pi, (18)

and the snowplow equation of motion becomes

BZ

2 2
4 [1( po(Xo -X o

2
dxX | _ Wi
dt -2t X (55— -

) at | = -po) . (19)
where X(t) is the radius of the current sheet and Xo is the radius of the tube,
The other quantities are defined as before, and the equation is to be solved
with the boundary condition X(o) = X,

An analytic solution of equation (19) can be obtained if it is assumed that
the current i(t) rises instantaneously from zero to a constant value il. (This

can be approximated fairly well in practice if the external inductance is made

sufficiently small.) The desired solution of equation (19) is then

X=X -kt (20)
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where

=22 1. o -2 % | (21)
Y

and

12\ 1/2
c, -.-< 1 ) (22)
pO

is the characteristic speed for the device.

The result of the theory, then, is that the gas moves radially inward with
the constant speed %tL = kl' It is interesting to note that the speed is in-
dependent of the dimension X0 of the apparatus. Moreover, the scaling laws
are once again obtained; the shock speed scales linearly as the current per
unit length and inversely as the square root of the density. Once again
typical shock speeds can be estimated; for deuterium at an initial pressure
of 100-p and currents of about 10‘6 amps/ni, shock speeds of about 25-30
cm/yu-sec are to be expected, Finally, the internal energy may be calculated
just as in the case of the inverse pinch; here again there is equipartition of
energy.

An analysis of the operation of either of the above devices for other forms
of the driving current in general requires a numerical integration of the
snowplow equaiion. The same is true if the solution of the inverse pinch is

desired near the central rod.

III. SNOWPLOW THEORY WITH CIRCUIT REACTION,

As mentioned in the Introduction, it is desirable for many purposes to
have a detailed description of the interchange of energy between source and
device, the division of energy between magnetic field and mechanical motion,
etc. When this is the case, the analysis must be modified to include the re-
action of the gas back on the energy source, This modification makes it
necessary to replace the single equation of motion of the last section by two
coupled equations, one equation for the electric circuit and the other for the
mechanical system. A detailed analysis of this type has been carried out
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for the ordinary pinch by Killeen and Lippman. >

As circuit elements, the devices in question are essentially variable
inductances which, under normal operating conditions, can be considered to
be connected simply in series with the energy source, 5 The inductance of
the device at any instant depends on the location of the plasma boundary, and
it is this dependence which couples the electric circuit and the mechanical
system. If the inductance of the device is denoted by Li(t). and the external
source is taken to be a capacitor of capacitance C in series with an (un-
avoidable) inductance Le' the circuit equation becomes

d : daol. 2 .
3t l:(Le + Li) dt]+c = 0 (23)

where Q(t) is the charge on the capacitor, If the initial pressure of the gas

is neglected, the rate at which mechanical work is done on the plasma is

dL.
- dX _ 1,d9.2 _—j
W= F. 3t ° (dt C @ (24)

so that the snowplow equation of motion (8) becomes

4 Max, 12 g0)? (25)
dt dt 2 dX de
The system is thus described by the two coupled equations, (23) and (25).
In these equations, dissipation in the resistance of the walls of the device and
in resistance in the external circuit has been neglected. Such dissipation
could easily be included but in practice is usually small. The main dissi-
pative mechanism, the shock wave, is included however,

These equations will now be applied to the analysis of a specific device,

MAST (Magnetic Annular Shock Tube®)

This device (figure 4) is also called a linear plasma accelerator. The
gas is contained between two coaxial electrodes which are connected to the
external circuit. When the switch is closed, the gas breaks down near the
end of the tube and a radial current flows in a thin disk between the inner and
outer cylinders. The discharge current gives rise to an azimuthal magnetic
field which pushes the current disk down the tube., The disk sweeps up the
ges ahead of it, leaving vacuum behind.
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LINEAR PLASMA ACCELERATOR

Figure 4. Diagram of apparatus

for linear plasma accelerator
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Other devices for the linear acceleration of plasma, in which the mass of
accelerated gas could be considered constant, have been analyzed by various

08'

authors along these same lines. These analyses differ from that pre-
sented below mainly in that they do not contain the mechanism of shock dissi-
pation. One treatment, however, ’ does take into account electrical resis-
tance, The device considered here has been discussed by Datl:ner9 whose
treatment, however, is somewhat inconsistent in that it is assumed that the
internal energy of the gas is always some fixed fraction of the kinetic energy.
It is clear from equation (17) that this is not generally the case.

If X(t) denotes the distance of the current disk from the end of the tube,

the inductance of the device is

Li(t)= £ X(t) (26)
where
LR
L% =35 In a (27)

is the inductance per unit length, d1 and dz being the inner and outer dia-

meters, respectively. Furthermore,

M(t) = Py A X(t) = m X(t) (28)

where A is the area of the annulus, so that m as defined by equation (28) is
the mass per unit length of the tube, If the initial charge on the capacitor is
Q . the equations of motion must now be solved subject to the boundary

o
conditions.

Q(o)

Q. QMO) = 0. X(0) = 0. X(0) = 0 (29)

A study of the problem in dimensionless variables shows that the
operation of the device can be described in terms of a single parameter.

If one introduces as dimensionless variables

x = __/{_ X (length)

T 3/%___?- (time) (30)
e
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a=_£ "~ q (charge)

the equations of motion become

< [(1+x) %%]+q= 0 (31)
d dx, 2 (32)
x5 - @y
and the initial conditions are
L7 (33)
- .
40 = ZET T %
qle; = x(0) = x(0) = 0

The equations and boundary conditions thus contain the single parameter Q.
the ratio of the initial charge on the capacitor to the characteristic charge for
the system. The time-dependence of all nondimensional variables is therefore
determined, once the value of this single quantity has been specified,

A general analytic discussion of the system (31) and (32) presents formid-
able difficulties, However, some general remarks can be made, For very
small times, x << 1, that is, the inductance of the device is small compared to
the external inductance. The external circuit is thus essentially shorted
through the device and starts to ring at its natural frequency. From the re-
sulting driving force, the initial motion of the gas is readily calculated. For
x << 1, the solution of the circuit equation is

q= q cosT, (34)

and with this as the driving term, the solution of the mechanical equation is
q 172

X = ‘]Q"T ('tz - sinz'r) (35)

This initial phase of the system can persist for a considerable time if
q, is made sufficiently small. Since a small q, implies a weak driving force,
the condition x << 1 can then be satisfied to values of 'tz >>1, in which case

the velocity of the front g,z: —_— ?’ . If © becomes too large, however, this
initial description breaks down and a period of strong coupling occurs,
Ultimately, however, the driving force (%‘}t)z must become small; the gas
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will then decelerate while conserving its momentum., Thus, in the final
phase

x ~ k/i’ (36)

The varying inductance now ''drives' the external circuit, the equation for

which becomes

4 dg =
e [kﬁ d1]+ q=0 (37)
The asymptotic solution of equation (37) for large times is
-1/8 4 <
qQ~ sin 173 - 0 (38)
3k/

A numerical solution cf equetions (31) and (3" has been carried out on
an IBM 7090 for a number of different values of the parameter Q.- The
results are shown in figures 5-8. The dashed curve is the asymptotic solu-
tion for x << 1 given by equations (34) and (35). Ii is evident that, for the
small values of 9, the asymptotic solution iy a yery good approximation
indeed to the actual solution over the entire range shown. The numerical
solution has also been carried to values of T >> 1; the results verify the
validity of equations (36) and (38) in this limit.

An energy integral of the system (31) and (32) is readily obtained, namely

x
%qz+%(g§;,)z +% x (gﬁ)z + i- x(g-ﬁ)z +i-/(g‘,‘t)zdx= %qoz
0
(38a)
The integral in equation (38a) is the internal energy in nondimeénsional form,
The internal energy can be calculated from this equation once the equations
of motion have been integrated. The result for q, = 1 is shown in figure 9,
where for comparison the kinetic energy has also been plotted. It is seen
that there is no simple relationship in this case between internal and kinetic
energy.
The predictions of the theory may be compared with the experiments of
Dattner, ? These experiments, with deuterium as the working gas, covered
a range of pressures of 200-1000 p and a range of voltages of 3-7 kv, With
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POSITION OF PLASMA FRONT AS A FUNCTION OF TIME
FOR VARIOUS VALUES OF THE INITIAL CHARGE
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Figure 5. Position of front as a function of

time for various values of q,
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VELOCITY OF PLASMA FRONT AS A FUNCTION OF TIME
FOR VARIOUS VALUES OF THE INITIAL CHARGE
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Figure 6. Velocity of front as a function of

time for various values of q,
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CHARGE ON CONDENSER AS A FUNCTION OF TIME
FOR VARIOUS VALUES OF THE INITIAL CHARGE
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Figure 7. Charge as a function of time

for various values of q,
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CURRENT AS A FUNCTION OF TIME FOR VARIOUS
VALUES OF THE INITIAL CHARGE
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ENERGY IN GAS AS A FUNCTION OF TIME
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Figure 9. Energy distribution in the gas

as a function of time for q, = 1
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6 9

circuit parameters of C = 12,5 x 10"~ f and Le = 57,4x 10 " h, this range

of pressures and voltages corresponds to a range of values of q, of 0.8 - 4,2,
It was observed that the velocity of the gas became roughly constant after
about 1/4 of a cycle, with the velocities attained by the gas ranging from 6

to 11 cm/usec. The maximum calculated velocities occur at about the proper
time and range from 4 to 14 cm/psec, Thus, there is rough agreement be-
tween theory and experiment,

One of the sources of discrepancy between theory and experiment lies in
the assumption that the flow is one-dimensional, that is, that the current
interface is a plane disk. The magnetic pressure across the annulus varies
as 1/rz. where r is the radius, and therefore decreases from the inner
electrode to the outer. This pressure distribution is incompatible with the
uniform dynamic pressure which exists across a plane disk. It is actually
not difficult to modify the theory to take this effect into account. The shape

of the interface can be calculatedlo

by requiring that the magnetic pressure
across the interface is everywhere balanced by the dynamic pressure given
by snowplow theory. The shape calculated in this manner turns out to be

a paraboloid of revolution, in agreement with experiment,

IV, SIMILARITY SOLUTION FOR INVERSE PINCH,

As mentioned in the Introduction, special cases exist for which a
similarity solution of the full magnetohydrodynamic equations may be ob-
tained describing the flow in complete detail. Of course, the external
circuit must be replaced by an appropriate boundary condition. One such
case is that of the inverse pinch with just those initial and boundary conditions
for which the snowplow solution was obtained above, namely an initial uni-
form axial field in the plasma and a discharge current which increases
linearly with time. Details and results of the calculation appear elsewhere. 11

It is sufficient to say that the solution is of the form

plx,t) = p o (@)

u(x,t) = c* U (&)
(39)

pix,t) pc.c:"‘2 P(9)

Bz(x. t)=p oc*z B(o)
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SPEED OF CONTACT FRONT AS A FUNCTION OF
INITIAL PRESSURE IN GAS FOR DIFFERENT
VALUES OF THE RATIO OF INITIAL MAGNETIC

PRESSURE TO GAS PRESSURE
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Figure 10. Comparison of speed predicted by snowplow theory with

speed of contact front obtained from a similarity solution of the full equations
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where o, U, P, and § are nondimensional functions of a single nondimension-
al variable ®. Two exact integrals of the four magnetohydrodynamic equa-
tions are obtained, and the remaining two equations integrated numerically,
The full detail of the flow between the shock and the contact front is thus ob-
tained.
Of particular interest is the result shown in figure 10. Here the speed
of the contact front obtained from the solution of the full equations is com-
pared with the speed predicted by the snowplow theory, equation (13). It is
seen that there is remarkably good agreement between the snowplow solution
and the similarity solution over the entire range of shock strength. The
reason for this uniformly good agreement is that, independent of shock
strength and specific heat ratio, most of the momentum in the flow is carried
- by the fluid very close to the contact front where the density and velocity are
greatest. Snowplow theory, being simply a statement of momentum balance,
predicts rather accurately the motion of this portion of the fluid. This
accounts for the success of the theory noted in the preceding sections.
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NUMERICAL APPROXIMATIONS FOR WEAK SOLUTION OF MIXED
INITIAL-BOUNDARY VALUE PROBLEMS OF FLUID FLOWS

Dr., W, Mcllroy
Mr. M. Halem
Republic Aviation Corporation

1. INTRODUCTION,

This paper will present a brief survey of some of the problems that are
under investigation by the Plasma Propulsion Lab, in conjunction with the
Digital Computing Division at Republic Aviation. Each of the problems
represent a special case of a more general system of conservative hyper-
bolic equations with moving boundaries.

In support of the work being carried out in developing a pulsed plasma
accelerator, a number of studies have been made of the pinch process using
various models with varying degrees of sophistication. In the present paper
emphasis will be placed on the analytical solution obtained by Chu1 and the
numerical gasdynamic treatment using the technique of the pseudo viscosity
term of I..ax2 for application to an IBM 7090. The analytical approach is
based upon the assumption that one shock, and only one, exists. The numer-
ical approach makes no such restriction. It is conceivable in the general
case that more than one could exist, resulting in shock collisions and violation
of the constant entropy condition for pigton problems. On using the numer-
ical technique, however, if more than one shock does arise they are im-
mediately recognizable as areas across which rapid changes in the variables
take place, and are automatically accounted for in the analysis, This tech-
nique is therefore a very powerful one, especially in cases where the actual
physical processes are not completely understood. This same method has
been applied to the study of hydromagnetic shocks generated by the relative
motions of fluids in the presence of magnetic fields, Here again the shocks
are readily identified and can be categorized into the fast, slow, or Alfven
variety, without the necessity of prior shock fitting. The technique is
applicable to fluid flows for arbitrary dimensions.

The analytical approach is presently being extended to the compression
of a sphere of plasma by an external magnetic field, where the field intensity
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is a function of the plasma shape at any instant, This problem is being
studied in support of project Cantaloupe under contract with AFSWC,

A further problem that fits into the general numerical procedure is the
Stefan problem of heat conduction, which is extremely important in reentry
"~ studies, The program that has been developed makes it possible to treat
arbitrary geometries in one, two, or three dimensions, with layers of
different materials and moving boundaries. A similar problem also arises
in the studies of the initial ionization processes and skin formations in the

pinch, as was described by Killeen, Gibson and Colgate3.

2.1 HYPERBOLIC SYSTEMS OF CONSERVATION FORM,
Consider the hyperbolic systems of equations from gasdynamics and

magnetogasdynamics which have the following form governing the basic flow

Ut+v-F+B=O (2.1)

where U is a column vector of the unknown functions, F and B are

equations:

vector valued functions of x,, t and U, where x, represents the spatial co-

ordinates x, y, z and the symbol V is the cust:mary del operator, The
initial condition U (x,0) = ¢(x), is assumed to satisfy equation (2.1). Such
systems of equations are said to be of conservative form,

To illustrate such systems, consider the nonsteady, non-isentropic,

dimensionless ideal gas flow equations in Eulerian coordinates which are

O

=)
2 2 (2.1.1)
CUN R +m_} = -0
r

3
S5E .5 (p+E) | L om(E+p) =
T Stm? e 7O
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W= u*/ao
r=r/R,
3= V.
E- E,

P - LE -

and where

u, v g

are dimensional quantities

and 0 « 0, 1, 2 for the one-dimensional, axisymmetric, spherically sym-

metric cases respectively,
The familiar Lundquist equations {for infinitely conducting, nondissipative,

inviscid ideal gas) in dimensionless form are:

2 B, + 218 r_n__mv}=

3¢ *+ax{Y9x 3 O

28, 4, 2 1B, mx _Mel .

ot = X i - ? ?3 O (2.1.2)
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m,+~a,{mmt \:B} O

ot
= _m 2 \MmxMa _ A
ot 2+ax&€:‘! bB‘Jj'O

3¢S+ ™ =0

<2 _R__é_@- 2 - X 2
% Y <BY*B‘)%}+§ e (56

ot
+2 + By + ] 3)- %(‘“X +Bymy *Beml)}‘-‘- O

where { ‘S b I_.s. and U il the initial value
Uy, of U e

The equations for a steady, two-dimensional, nonviscous, adiabatic,

rotational flow are:
V- (Quw)=0

S (U9u) + 2 (veuw)-2p -0

5__ myv) +i VSDV>_.__P O
(2.1.3)

Foufsizds ges)e

S age Py - O
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where p, p, u are the unknowns,

These particular systems are only a sample of those which lend them-
selves to a general method of numerical solution which is directly applicable
to the actual form of the physical problems. The occurrence of these prob-
lems in nature usually involves at least one moving boundary and more often
two free boundaries. Almost any attempt at their solutions has led to simpli-
fying assumptions which usually are not physically realizable,

For such systems a complete mathematical theory exists, since they are
all of hyperbolic type. However, the existence and uniqueness of solutions
of such systems are all of a local nature. The physical nature of the problems,
because of neglecting such notions as viscosity and heat conduction, gives rise
to the mathematical notion of "shocks' or discontinuities. These discontin-
uities in the solutions do, however, have certain algebraic properties derived
from the conservation principles. It is these curves which become the free
boundaries in many important physical problems and they have led to a host
of analytical and numerical techniques for effecting their solutions.

2,2 THE "LAX DIFFERENCE SCHEME",

The method adopted for the numerical solution of such a class of free
boundary problems is essentially due to Laxz. The notion of weak solution
is introduced, since one is interested in solutions in the large which need not
have continuous first derivatives. A solution is defined as weak if it satisfies

ﬁ {MU tFVW-WBY dxdt + SW(X,o)QS(x)c}x =0 .2

where W is a test function with continuous first derivatives and is zero out-
side some interval. It can be shown that for two genuine solutions on two
adjacent domains separated by a smooth curve, where the slope of the curve
satisfies the Rankine-Hugcniot shock conditions with respect tc these two
solutions, the smooth curve forms a weak solution over the entire domain,

As 80 often happens when one generalizes the noﬁon of solutions in mathe-
matics, a penalty is imposed. In this case the initial values for conservative
systems do not determine a unique weak solution. However, an additional
principle asserted by Lax to determine the unique solution is that ""weak
solutions for fluid problems are limits of viscous flows',
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Using this principle one can enlarge equations (2.21) to a nonlinear

parabolic system

U+ VF+B= AVEY (2.2.2)

For a fixed initial value of U(x, o), the solution exists for a range of t
independent of A , If corresponding solutions U)\ (x, t) converge boundedly
to a limit Ulx, t) as \ — 0, then this limit will be a weak solution.

The difference scheme is derived by choosing X (Ar!2 and using a
Y

forward difference approximation with respect to t and centered difference
approximations with respect to x.
This difference method gives rise to the following recipe for differencing

the equations,

Replace ) by ,
t
st - Wonsses) e bosna
2. (2.2.3)
and ____0 F by
0 x

(2.2.4)

e { Fy (x+Ax=.ti] -Flu (x-AXle}
AX 2.

This difference scheme when viewed as an approximation to equation (2, 2.2)

satisfies the stability condition for parabolic equations;

At L
@an)? <2

The difference equations can also be shown to be stable for the hyperbolic

i.e.,

systems,
Since it is desired to select the unique solution in nature, it is con-

jectured that one should try to satisfy the stability criteria of Courant-

: Lt 1
Friedricks-Lewy for hyperbolic systems (i.e., > < T ).

It is our aim to extend this method to mixed initial value problems. For
free and fixed boundary value problems one usually has integral forms of the
conservative systems determining the behavior of the boundaries, The

system of integral equations take the following form
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Updv + j FR.d2 = 0
® 56 22,9

These integral forms lead to equations (2.1, 1) by application of Gauss'
Theorem, However, the equations being solved are of the form (2,2, 2), Thus,
equations (2. 2, 5 should be modified if they are to lead to equation (2. 2,2), A
natural generalization of the integral forms leading to this system takes the

JUtdv»f Frd3 = | AVUR. &S

70 S() S(t)

form

(2.2.6)

From this form it is possible to obtain equations governing the motion of
the free boundaries.

Questions as to the existence of solutions of equations (2. 2. 2subject to
conditions (2, 2. 5) have been only partially answered for specific problems.
That such solutions U, of the equations (2.2, 2 with boundary conditions
(2. 2. 6converge to solutions of equations (2. 1. 1) subject to boundary conditions
(2.2.5)can only be conjectured at this moment, However, for many of the

cases tried so far, the method seems to give promising results,

3. APPLICATIONS TO PHYSICAL PROBLEMS,

The general difference scheme just described will be applied to various
problems which have already been solved by special techniques. A summary
of the technique by which analytic solutions have been obtained will be de-
scribed, and then the application of the generalized Lax method to the same
problem will be presented. The following selection of problems includes some
of those that have been of theoretical concern to the Plasma Propulsion Lab
and of numerical interest to the Digital Computing Division of Republic
Aviation Corporation.

3.1 STEFAN'S PROBLEM,

The first type of application to be considered includes those physical
problems governed by parabolic equations with moving boundary conditions,
Missile reentry problems for bodies with ablating materials, melting of ice,
recrystallization of metals, are some examples of problems now considered
as Stefan's problem. The problem also arises in studies of the initial
ionisation processes in a phomas. Consider the simplest form of the Stefan
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problem described by the following equations:

IV 2
St N S%2 (3.1.1)

for O <X < b({) where b (t) is the position of the boundary subject to
the following initial and boundary conditions

2Y (op)

-1 3 t=0

(3.1.2)
V (%x,0) 1.2)

X
v bl ] =1
2 (bl),t] = - b

b(o) = 1

This is almost the form considered by Douglas and Gallie4 for which a
numerical difference scheme is shown to converge to a solution whose ex-
istence and uniqueness have already been established by Evan35 Theirs
is a series method that resolves the solution. However, the coefficients
of this series are difficult to obtain and no radius of convergence is available,

Applying the recipe for the equation of form (2. 2. 2)to the equations (3.1, 1)
where U« v and F « 0 leads to the following difference equation at some
point x, t in the interior of the domain O£ X < b({:} S Q<t & o>

\/(X)t +A‘t) = A(f_{_)_z {V(x-rAX,t)" ZV(X,{.)*V(X-A%){')} (3.1.3)
) .1,

Additional equations are now needed for the boundary points [b (t), t] .
Equations (2. 2. 6)applied to (3. 1. l)lead to the following equations

blt)
dfl?\ + A = -g%’- dx (3.1.4)
o
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Since v [b(t). t]‘ is known for all t, (3.1, 4gives an equation for b(t),
Approximating the integral by a trapezoidal rule and replacing time de-
rivatives of the quantities by forward differences lead to the following

blt+at) = be)+at (4o g vai V(i At +84) = V{iaxz) Ax}(&l.s)
where \ AX =\D(t\) i at

The general recipe for the solution of free boundary value problems for
hyperbolic systems obtained from the integral conservation laws was an
outgrowth of this problem, The effectiveness of this approach for a single
nonlinear parabolic equation, with boundary conditions general enough to in-
clude radiation terms and ablation, is described in an RAC report by Pines,
Halem and Broder, 6

It was natural to try to extend this approach to nonlinear parabolic sys-
tems. Other numerical schemes for such systems are presently being in-
vestigated, and as yet many open questions remain to be answered,

3.2 HYDROMAGNETIC SHOCKS

The next class of problems that the general numerical procedure will be
applied to are the problems leading to magnetic shocks caused by relative
motions, Consider a conducting pole face of an electromagnet adjacent to an
infinitely conducting fluid with a magnetic field normal to the face and where
no relative motion between magnet and fluid is assumed, (Figure i.)

Suppose the magnet is suddenly set in motion with a velocity - Uy . A
motion will result because of the presence of the x-component of the magnetic
field. The magnetic lines of force can be regarded as fixed between magnat
and fluid. The motion of the magnet pulls down the lines of magnetic inten-
sity and the fluid in a thin layer adjacent to the pole, This produces a com-
ponent of the magnetic field By in the layer. The variation of By with x in
the layer results in a current density in the z direction of magnitude

0H T<B
Y | . Thus the fluid experiences a magnetic force J x B which is in
x 0 H
the x direction of magnitude BY 3 Y| . This force produces a motion
x

in the layer which then propagates out. One can consider the motion of the
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electromagnet in the x direction, which leads to a pure gas dynamic problem,

.o

or in some arbitrary direction leading to more complicated shock and wave
patterns,

The resultant flows will give rise to fast, slow, and Alfven hydromagnetic
shocks as well as various wave motions, The particular problem for motion
in the Y direction was first’formulated by K, O, Friedrichs and leads to
resolution of shear flow discontinuities, J. Bazer was the first to obtain
numerical solutions of these problems7. The method used was that of piecing
together fast shock and simple wave solutions,

The general approach described in Section 2, when applied to the Lund-
quist equations (2 1.2) leads to the following system of difference equations.

B-:i = (B“ - 1R it Y1 [(Bm.ﬂ m‘un :\3105 — (éai-l mi;" .-".‘kl’*i‘ '\ Qt—
2

: gs AX )

+ .
1 | 1-1

J4 3 3 !
mx'L = @"i"+ m*;--) -1 <mz;-i;' + B..2 + BZ b_)
2 < ?;ﬂ T v <

Pi..d )
—_— e (3.2.1)
< lJ| X ¥ BB'" 2.

JH _ ( . ‘-\ | /m TT\‘)l.’
“ 2 3 -__2— \ S)J - BQ)N \o>

(Y

)
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(3. 2. l)con't,

E* - { mim +m25;..> i;.. E-':nA * _b_}
2 { ( 28, T ye-) T AN
‘m“;'\-. +m5¢- -t P-l Et' 2 _b_}
+ g‘( 208 > >3- |) T Bé\-. 2

| mi;.. ‘mi'.‘ " E.. EL.,A o
"2'[9:.. {( z?.*f) B-‘*" gt }

—b{\mlsi_ﬂ +. '31¢|m;ioh — mé:i_., i(mii-u t"jaﬂ) + E.i-c Ei-l A
9 /9 29!, 3 (3-1)

e}

+ B i ﬁ:%‘- (——E————“‘ 3)}

[Py . 2 “n 2 3+l mZS“ -
e (e g - (e e

Select a coordinate system that moves with the mean velocity of the
thin layer. The initial vectar is U.(Byo,m,,o)myo) g) EO) for X<0

'ndU C BY N ,-JmY P , for A >0, The numerical solution with
this dxfference method gave very good agreement with the numerical an-

alytical solution of Bazer (figure 2), For better agreement in the neighbor-
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hood of the shock, larger values of %‘ are needed whereas for the steady
state region, smaller mesh spacings should be used,
This approach is now being used in resolving other hydromagnetic shock -~
flows and seems very promising,
The method gives numerical answers which are sufficiently accurate to
be used directly in shock fitting techniques. Quite often the knowledge of the
strength of some parameters across magnetic shocks of arbitrary types, as
well as the relations which are knowns. enables one to actually compose the
flows from the pieces directly, These techniques are now being developed
for arbitrary motions of the magnetic ‘poles moving into infinitely conducting

plasmas,

3.3 MAGNETIC PISTON PROBLEM (PINCH EFFECT)

Consider a pair of circular electrodes in an electrical circuit containing
capacitive, resistive, and inductive elements., When a sufficiently high
voltage is applied across electrodes, the gas between them ionizes and a
current sheath confined to a thin cylindrical shell at the edge of the electrodes
is produced enclosing column of gas between electrodes. The magnetic field
produced by current sheath then interacts with the current to produce a
mdially inward Lorentz force, 7 x B, and compresses the enclosed gas.

If the ionized gas has high conductivity, a current sheath of approximately
zero thickness is formed, which enables one to think of this sheath as a
magnetic piston. Since the magnetic pressure and gas pressure should be
continuous across the infinitely thin current sheath, we obtain gas pressure '
P = M T2
3 3 ]Tzrz
which varies in time. It will be assumed initially that I (t) is given from

+ PB where Pg is static gas pressure behind the piston

external circuit characteristics and the time varying inductance due to move-
ment of sheath is neglected. Assuming no leakage through the magnetic
piston (or current sheath) equations (2. 1.1) govern the flow, Prescribing p
on the curve OP in (figure 3) and the initial state on OA is a well posed
problem,

BS represents the shock curve arising from the compression by the
piston. The positions of the curves OP and BS as well as the flow between
them is to be determined.
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Figure 3,

Several approximate methods for solving this problem have been de-
veloped, but a complete solution to the physical problem is still open, A
widely used technique for approximating the solution is the snowplow model.
This thoery assumes that all the mass swept up by the shock is compressed
into a thin layer so that the piston and shock curves can be treated coinci-
dentally, The motion of this-layer is governed by the momentum equation,
This model gives valid approximations when the shock is sufficiently strong
and the specific heat ratio of the gas is close to unity,

Another approach is that described in the paper by Drs. Greifinger and
C0109 which makes use of similarity solutions. Assuming the solution has
conical similarity, and introducing a coordinate system employing the stream
function and a certain mass ratio parameter, one obtains two coupled ordinary
differential equations.

3.3A An Analytical Formulation of the Pinch Problem.

Employing a somewhat different approach by B, T, Chu1

it is also
possible to reduce the partial differential equations governing the flow to a
coupled system of ordinary differential equations. By labeling the particles
as when they are traversed by the shock (figure 4) .
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Figure 4,

a Lagrangian formulation of the equations for cylindrical geometry is

obtained in the form

\P\P == ?rl‘) rf‘t
. a2

h-ap

DY = oYy

Uﬁ\”1t

(3.3.1)

where the subscript S indicates that the quantity to which it is affixed is
evaluated just behind the shock. For a strong shock the density ratio

€~ 21
S+l

The boundary condition to be satisfied, obtained from the usual shock con-

ditions and magnetic piston in dimensionless form, are
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2 . 2

-2 -t
Prgxae @ ¥
+ 3l @ Y-t
P ¥+ (3.3.2)
w=_2 W @ =t

24, y
r-1 @ VY-t-0

where U _ is the shock speed (Note: LLO = ((;P)S t LLS @ L=V

Assuming strong shocks one can write the solution in a power series ¢

b - p®+ep?s € pth

[+

@ s er® & GZT‘w*“ L

(3.3.3)

¢
[

(o) ] 2)
€(b”*€,2‘()+ EZ?'( + )
- (O ) 2 (2)
W= \Ww +€EWw’” +tew +. ...
= W e +euP

Substituting into the equations (3.3, 2)and collecting like terms of ¢, the

lowest order terms are found to satisfy the differential equation

(-5 - 26

WHERE r® - f@) ano U - )
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This equation is identical to that obtained from the snowplow model,

Since the initial condition of fal at te0 is singular, the solutions of these
equations are determined by the single condition that £" (0) <0. When I(t) «
sin oC t one can derive a power series approximation for f (t) which for
small oCtis

F) = |“ 't NOIE: (3.3.5)

from which one obtains f" (0) as a starting condition.
Making the substitutions and equating first order terms then leads to the
following integrodifferential equation

F(f-1)+28% + £ (35 + £") -
2% [ Fas (Gl n sy

Fe) = =50 £ (5w - 59
Gy - - § {5 S:F(‘V,t) Sy ]

r%- S+ EF(‘P,t)ALp

W 55 iF@,t)éw

) S’/ )

[}

W, = J\Y

Att 2 0,f « 1 is a singular point, and the solution is determined from the

condition fl (o) = O,
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To obtain initial values one again obtains a power series representation

of f1 (t) for small oct as

f (0 =4C < [~ Sloqd]e?+

The numerical technique used to solve the coupled system of differential
equations was a general self-starting, Cowell (double sum) second order in-
tegration scheme with eighth order accuracy, The routine has the option of
using a fixed step or variable step size for better corrections. This method
is more rapid and has greater accuracy than Runge-Kutta schemes, The
integrals are evaluated by Simpsen's rule and the partial differential operator
on the integrals by a backward second order difference scheme. The power
series solution for small &t is used to allow for a sufficient number of points
to build up good integral and differential approximations. The integration
scheme is used with a sufficiently small fixed step size to avoid exceeding
the memory storage requirements of the 7090 which might occur if variable
time steps were used, The size of the steps was determined by solving
special cases of these equations with the variable time step option. The so-
lutions give the snowplow results as the zeroth order approximation, while
the first order result gives the separation distance betwen the piston and the
shock (figure 5.). This distance is relatively small, so that the dynamics are
well satisfied by the snowplow. However, the first order solution gives the
distribution of density, pressure, temperature and velocity in this small
piston-shock space. Because of the assumption of strong shocks, the density
at the piston is infinite initially, and remains so for the rest of the motion.

The basic assumption of such analytical solutions is that only one shock
is formed during the piston acceleration, It is conceivable that a number of
shocks could develop in the general case, and under these conditions re-
flected waves could change the constant entropy condition at the piston. It
is in this respect that the Lax procedure represents an extremely powerful
tool, since high gradients throughout the flow field will become immediately
evident,
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3.4 THE LAX DIFFERENCE APPROXIMATIONS FOR THE PISTON
PROBLEM,

For the present purposes the difference equations will be specialized to

treat one-dimensional flow,
Consider a subdivision Q of the domain D of figure 3 and denote the mesh

points Y = Z_—_ A Y and t = Z A-\-t where i and j are non-negative
integers., Let U (r t) at these points be denoted as U Using the recipe de-

scribed in (2.2.3, 2 4) the following system of dxfference equations over the
interior points with - (A%At andG =O can be derived from

equations (2.1, l)as

= Belrle ) ¢ (el (5 -030)

m; " =.%_ <mJ +mé_,) Bt L(p’

L+l Z.Ar‘ X‘ o

_Pj 3 4 M _@QZ
1= N 3
5)“‘ Pi~:

"'(mii._%'mi&)
(3.4.1)
BV Bl v + Bt I (Bl L) i (P,.E)

2Ar
?t#l l. |

+(g? +BaEf)

17 xi)LE“' LJ
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The time centered difference approximation over unequally spaced
distance intervals Ar and ocAr at the mesh points adjacent to the piston
path (figure 6) can be derived from the Taylor series expansion in both di-
rections; and eliminating the second order terms, one obtains for a function
o (r,t)

(Prj ==L = (1= P —o2? -i} (3.4.2)
and limﬁérly {q)‘ | ¢ CPL J OC(& + D AP

(3.4.3)

¢,,J' = %c(d?" )b 2P ae) B+ () B o )
L

< (e #1) (¢ + 2) Ar

(i+) L (1-1)
or oC AY
Figure 6

Denote the difference operator in (3. 4 by Vil and in (3.4, 3)by Viz

Apply these approximations to (2.1, l)one obtains the following system for
.the points adjacent to the piston path:

R Bt dsims Wfi’i’} + §
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(3. 4. 4)

3.5 NUMERICAL APPROXIMATIONS AT THE BOUNDARY,

The fundamental disturbances of the fluid arise and propagate from the
moving boundary and present the inherent difficulties of the problem,
Various numerical techniques were attempted and the appropriate approxima-

tions will be discussed.

3.5A Direct Methods for Boundary Computations.

The generalized system of integral equations to be used is:

: %
r (&) vle) (3.5A1)

j P(rt) dr = | Qc&r + (7\%\3{
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r(t) r (o)
® \meddr = | mde + [m plrdd + plod)] dt
r(t) v (o)

© | ewod - Jear s (36, - Pi'“’t}m{"m]at
| 0 S Lrd,t}

The additional boundary conditions arise from the equation of state and
the equation for the magnetic pressure.

These equations are analogous to the generalized integral forms for
fluid equations considering viscosity and heat conduction, (3.5Ala) says
there is a mass source, In the treatment of Von Neumann and Richtmeyer10
this term does not appear, since they were particularly careful to maintain a
close analogy with the physical description. It is one of the aims of the
present studies to investigate t he present scheme with and without this effect.

A first derivative approximation for Ur at a boundary point is required in
terms of computed values ‘of U at the interior points. Denote by P, A,

i s«I,...N, the piston point, adjacent point, and subsequent interior points,
Expanding U at P (j) with increments of o Ar and (1 + & )Ar one obtains on

eliminating second order terms

U | _ Uz ~(+)Us * (1 +20)Ue (3.5A2)
ar P (1 +) AF

Let this derivative expression be denoted by A ] U. An iteration procedure
will be described to evaluate U at the piston boundary, One obtains as a
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first approximation for pp in dimensionless form

) = { I
1 (1) ) am +1 (3.5A3)

remembering that rarefactions behind the piston are to be neglected until a
later date, This approximation uses the value of r at the previous time
(j-1) and will be improved once T (j) is computed.

The remaining variables to be determined are p(r (t), t'}. m{r(t). q} .
E {r(t), t } and r(t), Two prdécedures were followed at this point,

As an initial approximation it is assumed that the specific entropy is a
constant at the piston (as it would be in absence of A ). Therefore, knowing

Pp (3 » p can be computed from
‘ _ O :
ﬁ {Y(i))t} = exp i_?f \neﬁ’(ﬁ} (3.5A4)

Since the density is now determined over the entire mesh at time, t ,
one can now compute the total mass, From the equation of mass conservation
(3.5A1a) the position of r (jAt) can be determined. However, there are certain
possible positions of the piston for a given At,

The position of the piston

r
Figure 7

at the time (jAt) might lie between the points p, A of time (j-1)At or between
(A,1), or (1,2), etc., as indicated in figure 7,
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Since a fixed mesh is used for all time, and the quantities for all in-
terior and adjacent points are computed independently of the piston position,
it is possible to integrate over a region with too many points. Assume the
first case described, use a trapezoidal approximation for the integrals in
equation (3.5Ala) and solve for oc Ar to obtain the following expression for

oC j+eL

(3.5A5)

xé*‘ (‘ +Q.§ 0-|) AY‘

+{°(jﬁj -(|+OL3\?-9£ +(l+20(3\>?9$3] _S‘_\ (534. *_?L-H! X8
a2

o (v ) or

L (Sp* 94

where the initial approximation oc¢ j+1 '~ acj ; is used,

Since it is necessary to evaluate V, p at (j+1), an iteration procedure
for ‘xj+1 was introduced. If 0 < a(j+l < 1 then the points over which the
integral is evaluated is valid for a first approximation. Knowing a(J. +1 and
the number of points one easily computes r(j). It remains to co pute m_ (j).

Using a trapesoidal approximation once more for equation (35A1b), one

obtains

mp' = | § &-P.-M-l q?\[oc;..m*”-u% ol +(\+zo<m)m“‘]

v e oy, )ar

(3.5A6)

+93 - _A[q}me-(uupzm: +(\+zo<ﬂm‘p] M
oy (1 rx)Ar >

L

N-!
+ Z (m.i-n +mHI)AY' N m:“q;“ Ay - dJH A
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where mpj+1 is initially computed as r(j+1)-r(j)/Ajt.

At this stage EP can be computed from the equation of state knowing p,
mp. o P’ However, since the interior points have computed EiJ with the
quasi-viscosity term included, it would seem to maintain the consistency of
the technique that Ep be also computed from an integral equation,

Similarly, one obtains

E:H = i {: ?H| . ?\E(.\NEA“ (' *Q(n\z'EA (l+2qn|\E‘:l_]
=0 PPMI

J+I (‘ +Q 4\) A\"

. ) (3._5A7)
eim }\E«J (1) B + (14204 En ]
53-\ X (1 + A) Ar

At

+ 2E.R, - Z_ (B3 + E0 ) = £ e, 0 ~ay, Ar

= A

where ]E:pj"’1 is initially computed from the equation of state,

This determines all the values for the boundary point. Equating the
equations (3.5A3) and the equation of state, one obtains the following formula
for r(t) at time j+1

rzcsﬂ) ) 74 (3.5A8)
- Cepr -2 %fv)— ] —|}
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The iteration proceeds by repeating the sequence of calculations for pp.
p.. M, E, rP using the latest computed values, averaged with the pre-
ceding values, It is also possible to avoid the use of the assumption of con-
stant specific entropy. Again use r(j-1) for evaluating P, Now, only the

assumption of constant entropy at the piston, as a first guess for ij, is used,

3.5B Indirect Methods for Boundary Computations.

The alternate procedure that was tried was the indirect approach, This
method has the advantage of simplified boundary conditions, butrequires a
compensating amount of computing time for iteration on finding the true
boundary,

R(t) is prescribed for to< t{T, and assuming the piston path is the par-
ticle path of the point initially at the piston, one obtains Up(t) as well, Know-
ing the variables at the adjacent point A and the piston point P, at some time
t, the values of the variables are computed by linear interpolation at some
intermediate point C determined by the position R(t+At)
figure 8 as

Ar At 1+ 4t I\ t
< —> ¥ | + 79(
L~ 4t
lL/O"z '
& —
Q2

C

eAr-»i

P,

VY <e— () Ro r <—
Figure 8 Figure 9

Uc = AV‘NUP + {Y‘P(ﬂ - Y‘P(tfﬂt)}-U-A
A, + {r (8 - rplt+AL)} (3.5B1)

where U is the vector p, m, E and Ar_is PA. Using the unequally spaced
difference approximations (3. 4.2) and (3. 4,3), and applying them at the point C
gives rise to the following system

72



TN-61-29

Uy = -0 FU e+ VEUS oG, + U2

iy " (3.5B2)

Where F(UJ) PR, Tm)Z P+ EL)ms
is the vector mc 5 X ?c. 5 ?\
[

and ) E_ g~ \m =
- and for the 2nd component of U
!
the prescribed value of Up is used to compute m; , an - S;P J+'.
Having computed )O LP 5 EP the value Pp is computed again from

the ideal gas law,

Since the equations for unequally spaced intervals may blow up as

Ary, - O
J+l

adjacent point when Ar’N < € Ar . This has the tendency to greatly

a Lagrangean interpolation is performed to compute the

stabilize the unequally spaced difference approximations. This feature was
not incorporated in the direct approach, though it is now being introduced.

In the case, as shown in figure 9 where R(t) may pass through several
points for one time step, two features have been adopted. If only one point
is passed, the newly computed adjacent point is omitted, If more than one
point is passed, a refinement of the mesh spacing is performed by modifying
At.

This explicitly defined numerical scheme can now continue to the next
time step and so on to T. Since the magnetic pressure has been defined for
all t, comparing the computed pressure on R(t) with the prescribed pressure
enables one to fit the solution by modifying R(t).

Using the results obtained from the snowplow model as the first approxi-
mation for R(t), and then interpolating at certain intervals to obtain the
necessary agreements on the prescribed pressure, leads to improved
approximations for the desired solutions.

A much more exact procedure for determtning the initial piston motion
when the piston is driven by the magnetic pressure is by using the method of

characteristics prior to formation of a shock wave,
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When this is done for a linear current relationship (since the shock form
is an extremely short period of time) it is found that the piston velocity varies
2 2 2 2 2
as t°; up(t) = at *, where a = (2¢_/y) pio / 16" R P_. The shock first
forms atatimet_ = [2c_ { (y) at a distance from the outside radius
s o]
a

X, = Zco /Zc g (y). From characteristic theory, therefore, the
a

distribution of velocity, pressure, and density in the fluid between the piston
and the point of formation of the shock can be readily derived, This enables
one to have a more precise numerical procedure around small times,

Figures 10, 11, 12 show some of the numerical results that have been
obtained using these approximation schemes.
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EARLY SOLAR EVOLUTION
Dr. Arthur N. Cox
Los Alamos Scientific Laboratory -
For a number of years several of us at Los Alamos Scientific Laboratory
have been interested in applying to astrophysical problems some of the tech-
niques developed for bomb design. Conditions in stellar interiors are some-
what similar to those in bombs, and in some cases it has proved possible to
modify the time-dependent energy and mass flow equations so that they can be
applied to stellar structure problems. With the current ban on nuclear bomb
testing, we now have effort available to spend on these astrophysical applica-
tions.
There is much work to do in the field of stellar structure and stellar
evolution; and one of the current interesting problems is an understanding of
the complete history of the sun. Our calculations reported here start at a
time when probably the solar system was condensing out of material shed .
from a collapsing cloud of matter. We watch this cloud increase its surface
temperature from just a few hundred degrees to the present solar effective -
temperature close to 6, 000°K. Our future work is to be directed to the late
evolution of the sun when the increased solar radius and luminosity will make
planetary conditions much different than they are now. The results I have today
ignore the presence of the planets and the rotation of the sun. Actually our data
apply only to the rapid evolution during the first few hundred million years of
the solar life.
To study stellar structure it is necessary to consider a large number of
physical processes. The equations that describe these phenomena are of three
types. Those of the first type in figure 1 give the flux of energy due to radia-
tion, convection, and conduction. The radiation flux is that given when the
photons diffuse from one region to another region with only a slightly different
temperature. The Rosseland mean absorption coefficient or opacity appears
in this radiative flux expression. The other quantities are a, the radiation
constant; c, the velocity of light; p, the density; and T, the temperature which
changes in our one-dimensional calculations only in the direction r.
For convective energy transport we use the Prandt]l mixing length
theory. The flux is proportional to the 1.5 power of the excess of the
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existing temperature gradient over the temperature gradient followed by an
adiabatically expanding turbulent element. The element persists only for one
mixing length L, and the mixing length is taken to be 1.5 times the local scale
height. In the flux expression c_ is the constant pressure specific heat; v

the turbulent element velocity; ' the specific heat ratio; (aa-%—)v the constant

volume specific heat; and g the local acceleration due to gravity.

The conduction equation is the usual one with v the conductivity. We note
that this equation can be combined with the radiative flux equation if a con-
ductive opacity is properly defined.

The second set of equations given in figure 2 contains the hydrodynamic
equations. Our calculations are done in a Lagrangian coordinate system
where we follow the motions of mass shells, and it is not necessary to write
an equation for the conservation of mass., The conservation of momentum
law gives a force equation which indicates the magnitude and direction of the
acceleration, ¥, of an interface between two mass shells when the pressure
gradient, g'rR. and local gravity are not balanced. The Navier-Stokes hydro-
dynamics equations also include the conservation of energy equation where Q
is the heat put into a shell by the flux equations or by energy production.

The equations just described which govern the flow of energy and matter
contain a large number of variables, but through various relations one can
reduce the independent variables for a mass point of fixed composition to
only the temperature and density. These required relations are the pressure
and energy equations of state, the opacity law, and energy production formulas
all of which depend on the composition of the matter, the temperature, and
the density. These relations are given in figure 3. Here b' is the gas con-

stant which includes electron degeneracy, and E. and EEX are the ionization

and excitation energies. Radiation pressure andI energy have been included.

To illustrate some of these relations, there are shown in figure 4 pressure
data for a mixture of 0. 744 by mass of H, . 236 by mass of He, and . 02 by
mass of heavier elements distributed as given on the diagrams. If the
electrons are nondegenerste (nuclei are always nondegenerate) then

b'=b=§-
K

and the pressure equation of state is obtained only from the state of ionization
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of the mixture. At low densities the b has a plateau around a kT of a few
volts because of the complete ionization of hydrogen and Hel. At higher
temperatures the helium and other rarer elements are ionized to produce
more particles for pressure.

In figure 5 the ionization energy of this mixture for various temperatures
and densities is given. Again, steps occur in the variation with temperature
with constant density, because of the successive ionization of the important
elements in the mixture.

Finally in figure 6 we show the opacity of the material at various tem-
peratures and densities. A much more detailed table of opacities than shown
has actually been used, and the table has been inserted in the machine during
the computation. Enough points are included so that linear interpolation for
log K versus log T and log p is accurate to 10 percent, Simple fits have
never proved very accurate over reasonable ranges of temperature and den-
sity.

The total solar mass is divided into 30 spherical shells of approximately
equal thickness but not of equal mass. The thickness of these shells now is
allowed to vary as the usual time integration of the energy and matter flow
requires. Indeperndent variables for a shell of fixed mass are composition,
temperature, and density. The boundaries between the shells will take
positions such that the net force at an interface is zero.

From a starting array of mass, composition, temperature, density,
position, etc. for each mass shell, the flux equations and the force equation
can be evaluated to give net energy flow in the time step At and the net
motion in time At. There is also to be considered the thermonuclear energy
production in the time step. The energy equation of state and the conservation
of energy equation can be used to evaluate the temperature changes in the in-
dividual mass shells, Likewise the new positions of the interfaces determine
the new densities in the shells. Any composition change can also be noted,
and in some cases this may change the opacity law and equation of state some-
what. The variable now can all be advanced to be ready for the next time
step.

After some difficulty with the hydrodynamics as described above, we
have converted to a method which places the interfaces in hydrostatic balance

at the end of each time step. Thus when going from time n to time n + 1 with
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a step of At,
i+1 ot i+1/2 0%
n+l n i z i
SRS N > o Ar. + 37 AT, = 0
j=i-1 j b 117297

where r? for interface i is obtained from the conservation of momentum
equation, and the partial derivatives are rather elaborate analytic expressions.
Solution for the Ar and AT values are made by an implicit method coupled with
the usual implicit method of computing radiation flow, Never do motions in
stellar interiors get so rapid that this assumption of constant perfect balance
is invalid.

There is another violation of the fundamental equations that we make, and
that is in the equation for the convective flux. The convection is so efficient
that a very slight excess of the existing temperature gradient over the adi-
abatic gradient can carry all the energy required. Spurious fluctuations due
to the integration procedure can then cause very large excursions in the con-
vective flux. Thus, we divide the convective flux by a large factor so that to
carry the flux required of it, convection makes the existing temperature
gradient somewhat steeper than the adiabat. This steeper temperature gra-
dient only slightly affects the structure of the star, There is more room for
small integration errors with this steeper gradient, and wild fluctuations are
largely eliminated.

The results I show today are all in the May 1961 issue of Sky and Tele-
scope. For the details one should consult this article.

By manipulation of methods previously developed and by the addition of a
few new features, we have a machine code capable of doing this early evolu-
tion of stars with both more and less mass than the sun. The later evolution
of stars is another current problem which is also being studied by these time

dependent methods.
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THE AERONUTRONIC HOP PROGRAM FOR FLUID FLOW

Dr. R. A. Grandy
Aeronutronic Division, Ford Motor Company

The differential equations of hydrodynamics are

-g? + % VPeP=o0 (The momentum equation) (1)

2624. pV:q=0 (The continuity equation) (2)

gf + P gty =0 (The energy equation) (3)

gt! =q (The transformation (4)
equation)

P=Flp.s) = glp,e) (The equation of state) (5)

In the above q is the flow velocity, p the density, P the hydrodynamic
pressure, V = 1/p the specific volume, Sthe entropy, e the energy density
per unit mass, and T = Tx + ?y + Kz is the Eulerian radius vector defining the
location of an element of the Tluid. We may also writed = Ta + ?v + Rw,

Equations (1) to (5) are called the Lagrange equations of hydrodynamics.
In this scheme, %, y, and z are considered functions of the fluid element in
question.

Finite difference methods for the hydro equations break both the space and
time continuum into finite intervals, 1 The hydrodynamic variables are
sampled at various points in space and at various times. Let us restrict
attention to one-dimensional flows for purposes of illustration. In this case
a one- dimentional spatial mesh is sufficient to define the problem. The
above egquations, for example, are most commonly differenced in the form:

4

n n
‘ LLYEY)
U"‘H'I/z = U;'I/Z ¢ AUAPy )5 Py 4140 (momentum) (1)
(pA x)
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ntl [pneli@41 bl asl] _ o 0@+ 1, 0 & +1
Pi-1/2 [(xj ) - (X'j‘_l) ]-pj_l/z[(xj) (Xj) ]

(continuity) (2')

n+l n n +1 n+1 n
it el - Pt Filnd Vilye - Vi)
(energy)  (31)
ol 1 _ L . Un+ l/zAtn+ 1/2 (transformation) (4')
J J j
ntl _ n+1 n+1l :
pj-l/z = (pj-l/?.' ej-l/z) (equation of state) (5')

The superscripts n and subscripts j represent the temporal and spatial
mesh points under consideration respectively, Time centering of the above
equations has been achieved by defining the velocity and coordinate of a mesh
point a half cycle apart in time. The superscript & equals 0, 1, or 2 for
slab, cylindrical, or spherical symmetry. These difference equations are
well known and, with minor modifications, are used by the AFSWC'in their
SHARP program and by Aeronutronic in our HOP code. The equations used
include an additional term in the pressure, the von Neumann-Richtmyer Q,
to allow the equations to treat shocks, but the presence of this term un-
necessgarily complicates an illustrative discussion.

The conditional stability of finite difference approximations to linear
partial differential equations is well known, having first been discussed by

Courant, Friedrichs, and Lewy in 1928, 2

A mathematically rigorous
analysis of the stability of nonlinear equations has never been realized,
although nonrigorous stability criteria have been established which work in
practice. It is found that as Ax, the mesh size, and At, the time interval,
separately approach zero in the finite difference equations, the solution of
the difference equations does not necessarily uniformly approach the solution
of the differential equations. In most cases there must be a functional re-
lation maintained between Ax and At as they approach zero. Normally, it

is found that At must be less than some function of Ax: At < f{ di. Ax),

where « { represents parameters appearing in the differential equations.
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2. 9P
ap is the

In our z2xample, the condition is that At < Ax ., where ¢ =
local sound speed. ¢ s

The normal procedure in solving the finite difference equations is to com-
pute the quantity f(« i Ax) for every zone of the mesh, and, at the end of a
time cycle, to use the smallest of these quantities as a time interval for the
next time cycle. It is quite common for f to vary widely over the mesh, either
because &, varies or because of Ax. In our case, the sound speed might be
much higher in some part of the mesh, or the spatial interval might be
markedly decreased to give better spatial resolution in a particular region.

It is normally necessary, in these cases, to calculate in the main part of the
mesh with a At much smaller than required locally for either stability or
accuracy, and this can greatly increase the computing time required for a
problem. Several distinct approaches can be made to this problem: (1) The
stability condition can be relaxed. A different difference scheme permitting

a larger At or perhaps even Ax can be used. (2) The spatial mesh can be
varied during the course of the calculation to minimize fluctuations in the

time interval. (3) The local time interval can be used in advancing the spatial
mesh.

In the case of linear equations, unconditionally stable finite difference
schemes can be found for most differential equations if implicit schemes are
considered. Comparatively simple implicit schemes can also be obtained for
both Euler and Lagrage hydrodynamic schemes which are unconditionally
stable according to the usual first-order stability analyses. Unconditionally
stable schemes, however, do not remove all restrictions on At, the time
interval. They allow it to be chosen solely on the basis of accuracy. Non-
linear equations like those of hydrodynamics often permit the development of
discontinuities: for example, hydrodynamic shocks. Contact discontinuities
can also occur, even in linear equations. Normally, the difference equations
and spatial mesh are chosen so that these discontinuities are spread over two
or three zones, or a real distance which is as large as can be tolerated for
the definition desired in the problem. Let us follow Richtmyer's l:erminology1
and write our differential equation as 5{1 = Au, Most difference schemes are
based on integrating this in the form

a+l n n+1
Lj = Uj + (. (Au) dt.
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In a simple, explicit, forward-time-centered scheme, the integral is approx-

imated by (Au);1 At, where we have said nothing about the space centering. An
implicit scheme normally approximates the integral by (Au)r.1+1 At (backward

;” 1:' At (centered time differ-
encing), and, if the spatial differencing is done properly, unconditionally

time differencing) or by 2 l:(Au);1 + (Au)

stable difference equations will usually result. In most of our problems, Au
represents spatial derivatives of u. As discontinuities travel through the mesh,
these derivatives, taken at a point in the mesh, run from infinitesimal value
through finite value back to infinitesimal value as the variable goes from its
initial to final value. That is, (Au)j°= (Au)j = 0. We may plot (Au)j as a

function of time:

(Au)j

T is on the order of two or three times Ax/s, where s is the propagation
velocity of the discontinuity.

If the time interval is large compared to T we can easily make a large
error in the integration with any reasonable difference scheme. If t" and
tn+l are as shown, any of the three schemes mentioned will give a zero value
for the integral. For any degree of accuracy at all, the time interval must be
less than T, i, e. about 1 (égK ).

In many cases, simpler explicit conditionally stable difference schemes
will permit a comparable At, so that the more complex implicit schemes will
not necessarily permit an appreciable reduction in computing time. Generally,
the time interval in an implicit scheme might be expected to be determined by
that region of the problem where quantities are rapidly varying, for example,
in the vicinity of a shock front. The requirement may be that At <h( e 4,

Ax), where j is a point in the shock region. An implicit scheme can be very
valuable in cases where h has a reasonable value for most of the problem.
That is, even if a small portion of the mesh is finely zoned for better detail,
this portion of the mesh will only affect the time interval when a shock passes
through it. Otherwise, it is not artificially slowing the computing merely to

keep stability in its vicinity. Another approach which has been exploited in
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solving other types of initial value problems, like diffusion problems, is the
use of higher order schemes in the spatial differencing for the purpose of in-
creasing the spatial interval necessary for a given desired definition. Such
schemes have been used occasionally in hydrodynamics to reduce truncation
errors in cases where the mesh size changes rapidly over the mesh, but have
not been seriously exploited in the above sense.

There are many problems of interest where an explicit, conditionally
stable scheme will have a local time interval which varies widely over the
mesh and where the time interval required for accuracy in an unconditionally
stable scheme will always be smaller than desired. In purely hydrodynamic
problems, it has been found to be very profitable to use the local time interval
in advancing the spatial mesh. The following logical scheme permits each
zone of the mesh to have its own time interval, and advances the time by an
arbitrary amount per machine cycle.

At the beginning of a cycle, all points of the mesh exist at the same time.
Generally, after a further sweep through the mesh, the points will exist at
different times. A point is not accelerated if any of its neighbors have not
yet been advanced as far in time as the point in question, If, however, the
point is at a time less than or equal to that of all neighbors, it is accelerated.
The neighbors are relocated temporally by interpolation to the time of the
point in question. Hydrodynamic quantities are calculated at the time of the
point and the point is moved using as a time interval the smallestof the neigh-
boring intervals,

Various special cases may arise. If any of the neighbors is to be ac-
celerated at the same time as the point, the interpolation routine is redundant
and is bypassed for that point. If the time interval is such as to advance the
point beyond the end of cycle time, it is adjusted to just reach this time. No
zone is allowed a time interval greater than the cycle time interval, This
allows inactive points or points with a large natural time interval to be ad-
vanced to the end of cycle time in one sweep. If any of the neighbors(of a
point which has been advanced to the end of cycle time with the cycle time
interval) have not yet been advariced to this time, the inactive point is backed
up to the earliest such time and reaccelerated. This test automatically
activates points when a disturbance reaches them,
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The above scheme has been applied to the Lagrange difference equations
for one- and two-dimensional flow, We shall briefly describe the Aeronutronic
HOP program for one-dimensional flow. This program was originally de-
veloped for use on Bureau of Ordnance contract NOrd 17945, concerning the
detonability of propellants.

The HOP program is best explained by reference to the flow chart,

(Figure 1.) Location I is the entry point to begin a macro cycle. Part of the
left hand boundary conditions are set, registers are initialized, and the pro-
gram proceeds to A, At A, the time at which the coordinates of point j exist

is compared with the time for point j + 1. If tj >t the program exits

jr
to make an activity test at location M. If tj < tj+ 1 it proceeds to acceler-
ate the point unless it is already at the end of cycle time, in which case

another activity test is made. If tj <t is recomputed at the time

. X,
j* 1T T+l
of point j under the assumption that j+ 1 was accelerated with a constant
acceleration. If tj z tj+1‘ this interpolation is bypassed and we proceed
directly to calculate hydrodynamic quantities for zone j+l2 at the time of the
point j. If tj = tj+ 1
j*+ 1 during the same sweep, we will not need to calculate hydrodynamic

and if it turns out that we may also accelerate point

quantities for the left hand zone when doing j+1. Sense light 1 is turned on to
inform the program that this is so.

Location C is the exit from calculating hydrodynamic data for zone j+l2.
At this point, sense light 2 is checked., If it is on, it means that hydrodynamic
data for zone j-12 at time j already exists. If it is off, t. is compared with
tj-l' and in either case hydrodynamic data are calculated for zone j-l2.
Location D is the exit from the hydrodynamic calculations for zone j-}2. The
program transfers directly to D if sense light 2 is on. At D, the smallest
of the two time intervals At j+e and the cycle interval Atc is chosen as the
time interval for the point j. The time is advanced and checked against
tN+1. If the new time is less than the end of cycle time, sense light 3 is
turned on as an indication that at least one point has not yet been advanced to
the end of cycle time. The point is then accelerated and a new velocity and
coordinate are calculated.

Sense light 1 is on if the old t, = t In this case, sense light 2 is

1
turned on and the program transfers to B where it proceeds to process the

next point. If sense light 1 is off, tj was less than I:j+1 and normally the pro-
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N+1.

gram skips and proceeds to test point j+2 unless t, t . If this is true,

jr1”
j is stepped by one and control passes to the activity test M. Normally j is
stepped by two and the transfer is to location G where j is checked against
JMAX. If j > JMAX, the program transfers to F to begin a new sweep through
the mesh. If j < JMAX, t, is compared witht, ,. Ift, > t, ,, it is compared
N+1 - J j-1 VR S N2

with t . If these are equal, the activity test is made, Ift, <t , Jis
stepped by one and the program returns to G. If tj < tj-l' the point may be

accelerated depending on't If j « JMAX, the program transfers to H

where the right-hand bounc-i];}y conditions are set and an activity test made.
The activity test at location M first compares At, against Atc. the cycle

interval, If Atj < ot . the point has actively reached the end of cycle time

and the program proceeds to step j+1 and does'the next point. If the two in-

tervals are equal, the program selects the smaller of times tj-l and t

ol -

If the smaller of these is equal to N . the program proceeds to do the next
point. Otherwise, the point j is relocated to a time t, where t refers to the
smaller of the adjacent times and At is the corresponding time interval. Point
j is then accelerated.

Location F begins a sweep through the mesh. If sense light 3 is on, at
least one point is not yet at the end of cycle time and control passes through I.
If sense light 3 is oif, the entire mesh has been advanced to time tN+1.
Various end-of-cycle tests are made and the cycle time is stepped. The pro-
gram then transfers to I to begin a new macro cycle.

One further departure is made from the standard difference equations.
Since pnt! = g (pn+1. en+1). the time centered energy equation (3') is an
implicit equation as en"-1 occurs on the right hand side. If P is a linear
function of e, which would be the case for a polytropic gas, equation (3') can
easily be solved for e™ ! and an explicit time centered equation obtained.

Even a second order equation has some truncation error. In many problems,
the /PdV must be performed over a change in density of several orders of
magnitude, arriving at a final pressure many orders of magnitude less than the
original pressure which must be given with an accuracy of at.least several
percent relative to its final value. It is impossible to get the desired accuracy
using equation (3'). For this reason, we use the equation of state in the form
P - f(p, S). During the adiabatic expansion, S is constant, or at least

slowly varying. For a polytropic gas, P « A{S)p Y. This is our starting point
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in integrating the energy equation and equation of state., Basically, with
corrections for the von Neumann-Richtmyer Q and for other source or sink
terms, the pressure equation is written as

pnr*-l . (.F;L:-’-I)Y p°
where v is a slowly varying function of P and p which incorporates the degree
of ionization of the material.
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SOME COMMENTS ON CONVAIR'S WORK
ON NUMERICAL METHODS OF FLUID FLOW PROBLEMS

W. F. Brown

C. G, Davis

D. A, Hamlin
A, H, Schainblatt

Convair, San Diego

1. INTRODUCTION,

A discussion of some of the work on Numerical Methods of Fluid Flow
Problems that has been carried out by the Physics Section of Convair-San
Diego will be given, This discussion will include general philosophy, des-
cription of programs, techniques used, and results,

In order to avoid any semantic difficulties, let us state that when we talk
about one- or two-dimensional hydrodynamics we mean one space variable
and time or two space variables and time, respectively. For all other
problems, it will be assumed that they are time independent unless otherwise
noted; thus, when we talk about a one-dimensional non-equilibrium flow, we
mean a time independent flow in one space variable, The areas which we will
cover are one-dimensional and two-dimensional hydrodynamics and plane and

axially symmetric non-equilibrium flows.

2., GENERAL.

It seems appropriate to give a few general statements of our philosophy
regarding machine codes, We attempt a) to prepare our codes so that they
are not the personal property of the individual scientists who developed them;
b) to use, whenever possible, tested techniques; and c) to write our codes in
such a way that they may be generalized but still specific enough to do the
job at hand in a reasonable time, Furthermore, whenever possible, analyti-
cal and numerical techniques are used in a complimentary way.

Since we will have need of them later, let us now write the hydrodynamic
equations in Lagrangian coordinates, In order to do this, we now represent
the original Lagrangian coordinates of a fluid element as small{xi},i .1, 2,
3, and the Eulerian coordinates as large Xi , 1is1, 2, 3,

The Eulerian coordinates which may be considered as functions Xi -
Xi(xi, t),ial, 2, 3, give the positions at time t of the fluid elements which
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were originally at X,

Under the above definitions the law of conservation of mass becomes

A a_& (2.1)

Vo o {7(',}

where V 3 1/p is the specific volume of the fluid element, Vo is the original

specific volume in the Lagrangian system and  33; is the

Jacobian of the transformation {x-z} —_— {X a

We may write the equation of motion as

2 .
i_)ﬁ = =V _3__E_ 1= 1,2,3 (2.2)
at* =RaT

Our basic set of differential equations are completed by the conservation
of energy, which may be written as

- d

JE :—-Pdv + S

(2.3)

where E is the specific internal energy of the fluid and Sisa quantity which

contains sink as well as source terms,

In order to complete the above set of equations, an equation of state is
needed, One may use for this

P =P(E)V> (2. 4)

3. ONE-DIMENSIONAL HYDRODYNAMICS,

By specializing the above equations to one space dimension and taking
central differences, we obtain the difference form of the one-dimensional
hydrodynamic equations when Sas 0.

nes a% n n n n
ugmq - -Q,,Ar‘ [szoz“ sz ¥ q—gmu- q-zm‘]
n q -1
[Rzmu] <+ u"

Tames 2mae+a

(3.1)
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n+s n+d n
Rzmﬂ, A-t LLIM?J. + —Rzmu. (3.2)
nay n+1 =4
ney l (Rzrr\-'tq—( z2m - 1>°L (3. 3)
vam - QO m-fi) ( am - 1)
nes P;‘r:‘ P n+L]
EZ"\ - Zm + q
(3. 4)
n+a
[ -v?_m
n+4 - Zaz ( n+t N+t
qz’“ Vam *Vem Z"\*l - uzm-‘)
o n+i n+4e
§ W, > unni,
N+l . n+14 n+4
q' l& Wames 2 Uomoy (3.5)

Here P is the fluid pressure, a is the '""shock width constant,'' R = Xi, q
is the pseudo-viscosity pressure term and s 1,1,2, for slab, cylinder and
sphere respectively, If we now consider the case of an ideal gas, we can
write (3, 4) as

R [ F+ (2- Cl,;[—-m—.\———“j+P

(3.6)
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Also, for our stability criteria, we have used the White number

cat\2 Av
wze—[\:ﬁ) + 43 ‘-V-\—/l <4 (3.7)

where C is the velocity of sound,

Let us now consider a spherical piston expanding into an ambient atmos-
phere and assume that the flow field external to the piston is represented by
the one-dimensional hydrodynamic equations. We will now consider three
models for the internal flow field.

The first will take the piston as a thin shell with constant mass and given
initial energy. Interior to the mass shell, it will be assumed that Pz 0. For
this case, the equations governing the motion of the shell, which we represent
as a mass point, are given in difference form as

U_n“-_- u,\ _ Pn-ﬁ.(j‘_:_)z
1 i T M “’

(3.8)

R mul” « RY

whereP; (the external pressure) is found from the hydrodynamic equations

and M is the total mass of the piston,
In the other two models which we have considered to date, an internal

structure is assumed for the piston. The flow internal to the piston is con-
sidered to have a uniform initial density which is sufficiently low that particle-
particle collision can be neglected and an expansion velocity initially given by

U =W

In the first case, it is assumed that the interface is a membrane and the
internal particles reflect elastically from the membrane, Under these
assumptions, the equation governing the motion of the piston is given by

(A ) A (- As 4 A = L T2 (1-N) -0 (0ne)")

(3.9)
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Here f and A\ denote the fractional lag in velocity and position, respectively,
of the actual interface behind the unretarded interface. and te is a scale time,
The other case considered assumes that when a particle hits the interface

it sticks to it. In this case, the governing equation becomes

)Y A (A &) = 21 A - (02 (- A)

where the variables are defined as before, except that A, is replaced by

X =6,
3

Based on the above equations, a series of codes have been written and a

(3.10)

number of cases computed,

The first program solved the case of a spherical piston expanding into a
constant ambient atmosphere. In this code, a fixed number of points were
maintained in the flow field and only the points which were influenced by the
piston motion were calculated. In figure 1, we see the results of some typical
calculations. In this figure, the circled points denote calculations made for

2'= 5/3 and triangles for J*= 2. As is clearly seen, the variation of 9"
has a very small effect on the solution, Other calculations have been made
for different initial conditions and the results are similar to those shown in
figure 1, Typical pressure and velocity profiles obtained from our machine

calculations are shown in figures 2 and 3 respectively,
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G. L. Taylor1 has obtained a solution for a piston expanding with a constant
velocity in an ambient atmosphere. From this solution, one can see that over

a wide range of velocity we can represent the pressure on the piston in the form
P L)\

LS —_—
P =1+ r(ﬁ)( C (3.11)

©

where c is the velocity of sound in the ambient medium,

This can also be written as
= 1rely)
where
Q- T ()

To determine I’ (2") . we make use of numerical results obtained from the

(3.12)

expansion of a spherical piston with constant velocity., These results are
illustrated in figures 4, 5, 6.

Using this form of the pressure, one can obtain an analytic solution for
the motion of the mass shell piston. The results are given in figure 7 and a
comparison is made with a hydrodynamic calculation in figure 8,

Because of the applicability of the fitted pressure, it was decided to solve
the other two piston models using this form of the pressure, but analytical
solutions cannot be obtained as in the case of the shell model, except for the
special case of a constant pressure for which a power series solution can be
obtained. When the pressure equation (3.12) is substituted into equations
(3.9) and (3.10), we have ordinary differential equations for the interface
velocity. A program was prepared which integrates these equations and
results of typical calculations are given in figure 9, Also, as part of these
codes, the partition of energy was calculated and results of a typical case are
shown in figure 10, where E1 denotes the streaming energy, E2 is the kinetic
energy of the shell in the sticky model, E3 is the heat produced in the shell
because of the sticking, and E, is the work done against the total back pressure;
EZ and E3 are not applicable to the reflecting model. For the sticking model,
the total energy is clearly conserved to the accuracy of the calculation, The
total energy for the reflecting model is very difficult to calculate and has not
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Figure 8. vVelocity vs. Distance for Expansion of a Mach 6
Spherical Shell into a Uniform Ambient Atmosphere: Com-
parison of Result Obtained Solving Hydrodynamic Equations
with Result of Analyticel Solution Assuming Velocity- 2
Dependent Pressure of the Form P5/P, =1 + B (Uy/U,)

1.0

0.9

0.9

0.7 \

| \\\/— HYDRODYNAMIC
0.6
Yy
Uo
0.8
ANALYTICAL

0.4

0.3

0.2 \

0.1t

0
0 100 200 300

Figure 8

110




TN-61-29

/\l\ 9N1103143

NOILNTIOS ALINVTINIS — — — — — —

areudsomy JUITqUY WIOZFTU B O3UT

PROT) TeoTIayds mrogyufl LL°L YowW ® Jo uotsuwdxy JO STIPOW
BuTHOTAS pue PuT3oITIM J0F snyped °ss A3T00T9A  °6 amItd

30

€0

+°0

$°0

190

¢°0

on

111




e¥l 0

01 andi g

NHOM =¥3
1V3H TI3HS =%3
A9H3IN3 T13HS =23

AOH3INI ONINV3INLS

=13

*axoqdsouwjy JUSTQUY WIOITWl ® OjUT PROT) Teorrands

wrozTan LL°L YOWA ® JO uotsuwedxy JO STIPOW PUTHOTIS puw
BuTy0eTIeY JOF surTped °ss ABIeug JOo WOTANQIIISTA °*OT SMITI

ABiou3

112




TN-61-29

yet been done,

In order to check these results, a hydrodynamic program has been pre-
pared which uses equation (3. 9) and(3. 10). Preliminary results from this
code indicate that the pressure given by equation (3. 11) is still a good approx-
imation., In figure 11, a comparison is given between all three models for the
pressure given by equation (3. 11).

Programs have also been prepared which calculate the expansion into a
non-uniform atmosphere for the three models under consideration, Presently,
calculations are being made. It should be noted that with our present codes we
could calculate piston motion when the internal flow is governed by the hydro-
dynamic equations,

In this work, we have an example of analytical and numerical methods
complementing each other; also, of a machine program being flexible enough
to permit extensions and yet give useful results at each stage of development.

Other problems in this area in which we are actively engaged are hydro-
dynamic flow with radiation. Our present work is limited to radiation diffusion,
Thus, the only difference that occurs in our basic equations is in the energy
equation which can be written in differential form as

SE = -pdv+ V- (Kve')+S (3.13)

where K is a function of the opacity, 6 the temperature, and S a source term.
Our present code is so constructed that the energy equation is solved in a
subroutine, thus permitting different differencing techniques to be used in the
diffusion term and use of different methods of solving the resulting nonlinear
equations, In the present code, the Crank-Nickolson method is used, This is
an implicit method which replaces the diffusion term atn + 1/2 by the average
of term atnand n + 1. The radiation coupling is done by first letting the
radiation flow from n to n + 1 with the hydrodynamics held fixed, and then using
the temperature at n + 1, compute E and P. Now a number of other methods of
coupling can be used but the method presently being used has been successfully
tested and used on similar problems,

In our radiation-hydrodynamics effort, we have an example of a code which

has developed from a fairly simple code to one of some complexity in which the
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first methods being used are tested but the code is so constructed that basic

changes can be made in the code without major reprograming.

4. TWO-DIMENSIONAL HYDRODYNAMICS,

In this area, we have been interested in both pure hydrodynamic as well
as radiation-hydrodynamic calculations,

In order to achieve our goals, we first prepared a hydrodynamic code
modeled after the Los Alamos Magee code, 2 Thus the difference equations

used are

( Pr:,n 17 -Pxn-i 3- 1) (YQZ,T B I':T> (X:.z,; + X:,:\

2 (m1-1)3+1 + mr.-.:.);r-q)

(PI+1 Te1 P-Iu I- s\ (Y“ - Y‘:l z,d)(x‘::,x + X:oz.d)

Z_(YY\I., Ta1 YT Mgy~ 1) (4.1)

+ (Ptviu-x - :nu)xu\ (Y:;‘J = Y—::JQ) (Xx“g + er\.;oz.)
2 (mtu; 3 S mt-.t;n.z)

+ ( T-1,7-1 P:r+1 T-4 Y\Y:?}z "YI:\‘J') (X;;.V-a.'¥ X:,:)

2 th-t,l’-—i + m':.u;x-&)

n
Ars

Bn = K—Etuu "Pxnu ,m) (X:.I*Z _X:}j (X:A' +X‘;’S *73

5 Z.(m:n,'sﬂ RALLTE 7Y )

(Prrjl,rd ~ FDI‘:LJ’-A) (X;_\; B :|. 3-:. (Xz's + Xt 3-2

Z- (mI’LJT.l + mI-iJ'S-i) (40 z)

4=
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(E:.S*t ~ ths,‘:—x) (X 13 \At-z,r)(xgg N X:-z;)

2. (mr-t,:n\ + mI-l,’S‘*‘)

o (Bl P ) (X ~Yae ) Kas G)

2 (mI’fl,Tﬂ - mtﬂ,x—q)

X:: N X:s + Ot [U“r;,r - At AZT] (4.3)

n+li

Yx,‘s YI; + At vv:,nx - A B;]' (4. 4)

unl*; - u;\I - At A:r (4.5)

Wy = Wy — Ot Bas

(4.6)
y\-n [Xn-n( N+ M' )
(AMZ‘} T41,3 ) I*Z‘S ':3'+2
N+ ned n+l
+ Xr‘z’j' kYI,T’Z 1.3’ ) . (4. 7)

116



TN-61-29

ne+| n+7 n+l
+ ——
XI,I‘*Z Yr,;- I+2,7
(AA ):+‘ - -L- [:xn'“ (Yr\H n-H)
Stz +.34) < IT+2,7+2, I,3+2 +z 3

N+ n+1 n+)

+X ( -
I,3+2 ;—+z,x Yuz,xva (4.8)

XTH'I (Yn*| —-Yn""
I"ZS T+2,T42

= R+l I [ n+l n+t Nt
(XAI%)D,‘I“ -3 Xr.,-: + XI+2,‘S M ><t,:\’+z . (49)
— J_[ n+! n+1 nH (4.10)
< A3*2>1:u,3' v O | Xt*zﬁ'z+ XI+2.T I ,342
vn+| — A >ﬂ+l ( A
LR Xaizg Raizg T+LT+) XA”*Z 8342 J141,3¢) (4.11)
(‘R°A°>I+|,3+|

A\/t:‘l;“ - vn+ —_ vn

T+),T+) T+1,T+4
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Ny 2
n+t C B KAMZ“\)IH‘S“ A.!"\z.\x_H I:J T+ T (4,12)
+{, T+
(&) (v

CLM' =0 f oAy, <o

I+l
T+,T+) 33+

T AL 20

net = n - ne! n+l n
EI*'.FH EI* LT 4! Avm,y i (Eu 3 Eu&q (4.13)
2.
n+i (4. 14)
Eﬁ = P (E n * ) <+ CL"+ !
LT+ T+ I&] :H LT+l I O-I’T-Q-\
n+li 5
2 Nn+!
w - 2 (D Erﬁ ¥4l (A'{'.>
+| <+
[*4 T+ X+ = GAuzq)nﬂx“ (AA.’AZ. n" :,:]
(4.15)

4 ’ AV:?TLX+|
LV

T+1,3+)
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The acceleration terms are those obtained by the so-called Force Gradientz
Method. This code has the feature that the form of the acceleration terms
can easily be changed as well as the equations of state; also, the overall logic
is such as to minimize the time of calculations,

In order to develop our radiation hydrodynamics code, we first prepared
a radiation diffusion code which can be coupled to the hydrodynamics in the
same way as for the one-dimensional case. The basic equation solved in the

radiation code is the energy which when written in integral form becomes

%Loééﬁ = -L ?&g (4.16)

where E£:2£ (09,v) is the specific internal energy, i.e., per unit original

volume, ; is the flux of radiation across the surface S bounding the element
T o
By differencing these equations by the implicit alternating direction

method, i.e., for one time step, the equations are differenced implicity in

the X direction and, on the next time step, implicitly in the Y direction, We

obtain Y Y Y
n ne /2 n n+z n n+v2
+ +
Anl,m Aet-u,m Bm,x-\ Ae‘rﬂ,s-i Ct*'.-\'*l Ae"’»"" (4.17)
_ n
L+, 34|
~n n+lz = n n+'a ~n n+Y;
+ 2
Azﬂ;u Aetu,x-n +~B‘m;ﬁ| AeIH,I"l C:ﬂ,:-n AeZIIH Feodl
_ "
- T"l,r"-l
A ne'la n+l n (4.18)
THIA  THLTY) TH T+l
) At\ Kﬂ
where the coefficients To,3e) y PovTey etc. are known functions

of known quantities at time n,
These equations are solved by introducing the well known recursion

relationship
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A n+Y/z N+t nel n+'/z.
T3+l T 5+ T, T+ T+),T+1 (4.19)

By substituting these into the above equations, one obtains

n n+ n

an” = Dzn,rn - A-:-r;:-n Atﬂ,:rﬂ
r",f"l N Nnei
n
D + b A (4. 20)

TH,Tai T-4L,Te1 T4+, T+

n
bn*i - - CINJI'H

T34 /Bn 4 bﬂﬂ A”
TH I T-iyJ+l D4 T+

(4.21)

and a similar set for the Y implicit. Using these and the boundary conditions,
one is able to solve the necessary equations, The code used to solve these
contains the same feature as our one-dimensional code and the coupling is
done in the same way as before,.

Here again, we have used tested methodlz but still allow for other methods
to be easily used, and have developed our code in a step-wise manner,

5. NON-EQUILIBRIUM FLOWS,

Let us now briefly turn to the area of non-equilibrium gas flows. We
have chosen as our model that given by Wood and Kirkwood4 with the further
assumption that we have local thermodynamic equilibrium between classes
of degrees of freedom as well as within these classes. These equations
could also have been obtained by specializing the Kirkwood-Crawfords
equations to an inviscid nondiffusing gas. The equations are

4P 4 el vl - Red(ESW) - bRl Wy
" |
R§F + VP =0 5.2
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gz\* = Yo/ | (5.3)

T S = - FQ (5. 4)
$Ee-EM -

The density derivative has been eliminated from the mass equation by use

of the differential form of the caloric equation of state

Clox f— el TN (5.5)

where we have defined

ox - [R%/e%] U-Co"/g:l Ay /0 - Aqn} 5.6)

C2-(5%)
° IS/Q S &7\3 (frozen velocity of sound)
Q ( (/e > (frozen expansion coefficient) (5.8)
P a3

(frozen specific heat at
( >P (X3 constant pressure) (5.9)

OqF = ;/‘s\): (5.10)

(5.7)

Also p s is the specific chemical potential of specie s and v: the specific
stoichiometric coefficient for the s specie in the o«tth reaction,

In order to complete our set of equations, we introduce the equation of
state for an ideal mixture

P=QRTZ

(5.11)

Here Z is the compressibility.

The above equations govern the flow in non-equilibrium, The equations
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for frozen flow are obtained simply by setting v, s 0. It canbe -hown6

that the equilibrium equations can be obtained from the frozen equations by
replacing the frozen velocity of sound by Cz, the equilibrium velocity of

sound, and evaluating all of the thermodynamic functions from equilibrium
thermodynamics, It is easily seen that these basic equations are hyperbolic
in character and that the difference between equilibrium and non-equilibrium
equations is only in the coefficients and added flux type terms. Thus one can
use the usual tools for calculation of hyperbolic equations, Limiting ourselves
to plane and axially symmetrical flows, we find the characteristic relations

to be
Y | -uv:co-lww.z-cg- B +
Fl. = e “FF e

where the plus sign denotes the right-running characteristic and the minus

sign the left-running characteristic. Also, the streamlines are character-
istic, i. e,,

aY _ Vv

ox W (5.13)

The compatibility equations become

ch(u.év - vdw) + [0 - c&)Ft —uv]dP

(5.14)

+Qe2(ZSiru~ X&) (v-wrt)dx -0

where 3 z 1 for axially symmetrical flows and 0 for plane flows, Another
method is to finite difference the basic equations in such a way that the cal-
culation is carried out using the proper domain of dependence determined
by the characteristics. This has been done but will not be listed here. In
order to carry out calculations using the above equations, one needs the
thermodynamics which for equilibrium can be found in essentially three
different ways, (a) table look up, (b) analytical fits to the tables, and (c)
calculation of the basic equilibrium equations. It has been lhown7 that for
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a wide range of interest air can be represented as a simple gas governed by

the reactions

O, = 20
N, = 2N
NO =0 +N

(5.15)

Also, all the needed thermodynamic quantities can be expressed8 in terms of
G, the dimensionless internal energy Z and all their derivatives.

Using these concepts, subroutines have been prepared for calculation of
the thermodynamics for equilibrium and non-equilibrium. The basic difference
in these subroutines is that for equilibrium the species concentrations are
calculated from the equilibrium equations which are nonlinear algeb:raic equa-
tions, while for the other cases they are obtained from the kinetics which are
solved as part of the basic flow equations. Codes have been prepared which
use these subroutines and the basic equations for calculating flow fields. It
has been determined that it is wiser to develop separate programs for equili-
brium and non-equilibrium rather than to try to calculate all cases with one
code,

The one basic difficulty introduced by non-equilibrium flows over and above
determination of reaction rates is the limitation placed on the mesh size by
the kinetics. It has been found in some cases that the mesh size must be
taken such that it corresponds to a flow time of a nanosecond. Consequently,
large amounts of machine time must be expended for a calculation. At the
present, we are investigating various methods of reducing the calculating time,
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PROBLEMS OF RADIATION TRANSPORT
IN HEATED AIR

Dr. R. K. M. Landshoff
Dr. R. E. Meyerott

Lockheed Missiles and Space Division

Nuclear explosions in the air can be strongly influenced by the emission
and absorption of radiation which transfers energy from one point of the fire-
ball to another or to points in the exterior, The flow of radiation can be
expressed in terms of the intensity Iv' where Iv cos 6dQdvdtdA is the energy
passing through an area dA, during a time dt, in a frequency interval dv and
coming from an element of solid angle d O around a ray which makes an
angle f with the normal to dA. In general, the intensity Iv is a function of
position and time, direction of ray, and frequency or wavelength.

Along a given ray, the intensity changes in a manner which is determined
by emission and absorption of the radiation by the material through which it
passes. Such changes are calculated from the equation of radiative transfer.
If the material is in local thermodynamic equilibrium, the equation of trans-

fer is 1

dlv , ¢

(B, -1
ds v

v v

where (1)

b, = p K, (1 - exp(-hv/kt))

is defined in terms of the absorption coefficient Kv (p, T); s measures the

v cz kt

The mathematical character of equation (1) is well known and leads to

distance traversed by the radiation along the ray; B Zl'w3 [exp (hv)_l:l-

solutions where Iv , tends towards Bv . If the temperature remains constant
in a large enough region of space rather than changing from point to point,
i.e., if one has complete rather than local thermodynamic equilibrium, Bv
will also be constant and Iv will become equal to Bv' This is the situation
within a ""Hohlraum' or blackbody, and Bv is thus the blackbody intensity.
Equation (1) treats the radiative transfer problem for each instant as if

the density and temperature distributions were held fixed. Such an adiabatic
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treatment is justified because of the high velocity of light.

If the absorption coefficient p v is known as a function of p and T, one can
formally solve equation (1) in terms of the instantaneous spatial distributions
of p and T. To write this solution down, it is convenient to introduce the
optical depth of a general point P on the ray.

P

o
TV (P) = éuvdB

The upper limit Po is a point beyond the edge
where the ray emerges from the absorbing
region into the region where p v has gone to
zero. The point P, shown in the figure also P,
lies in the nonabsorbing region on a section

of the ray which has not yet entered the

absorbing interior. Fo
The intensity at a point P is then given by the integral
T, (P)
1 ' '
I, /Bv (P') exp(T - T )dT, (2)

TV

If I, has been determined for all rays going through a given point, the in-
tegral overall directions

a1,
do./ p, (B, -1,)do (3)

ds
is the difference between emitted and absorbed power per unit volume and
frequency and determines the rate of cooling at that frequency.

In principle, carrying out integrals like (2) is quite straightforward but
because of the strong frequency dependence of p ' extensive calculations at
many frequencies are involved. The difficulty which arises is that, even for
frequencies which lie close together, the major contributions to the integral
for I may come from widely separated points on the ray. The variation of
the point of origin (i. e. where the integrand in equation (2) is large) with
frequency is particularly severe for transitions between bound states because
they lead to spectral lines where the absorption coefficient is verysmuch
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larger at the center than in the wings.

Until a more satisfactory method has been found, one is forced to use
approximate procedures. It is customary to use smoothed coefficients for
the integration of the transport equation in which the contribution due to lines
is distributed in frequency as if they were broad enough to overlap.

The current status of calculations to obtain the absorption coefficient of
hot air is discussed in considerable detail in a forthcoming article by Meyerott
and Armstrongz. Results of such calculations in the temperature range from
1, 000° K to 12, 000° K and for density ratins relative to sea level extending
from 10 to 10'6 have been calculated and are tabulated as a function of wave-
length between 1, 200 A and 20, 000 A3. The actual wavelengths appearing in
the tables are those corresponding to values of hv extending from 0. 625 to
10. 625 ev in steps of 0. 25 ev,

In a higher temperature range extending from 22, 000°K to 220, 000°K and
in nearly the same density range as before, absorption coefficients have been
reported by Armstrong, Holland, and Meyerott4. The values of hv extend
from 1 ev to 1,000 ev, i.e., beyond the binding energy of the last K electron
in Owhich is 871.1 ev.

A number of agsumptions entering into the calculations of absorption
coefficients, such as the use of the Born-Oppenheimer approximation, un-
certain f-values, and the smoothing out prescriptions, make the use of these
coefficients somewhat suspect. One way of testing them for the conditions
where they are intended to be used is the calculation of the spectral distribu-
tion emerging from a nuclear fireball. Such a calculation has been carried
out for a 1-KT airburst with temperature and density profiles taken from the
report by Brode and Meyerott (ref. RM-1851). The results were compared
with experimental spectral distributions observed from such small airbursts.
There is good agreement on features like a sharp peak at 5,000 A and a
sudden ultraviolet cutoff. By contrast, the computed spectral irradiances
are significantly higher than the experimental values in the infrared region.
This would result if the free-free absorption coefficients had been assumed
too low. Recent theoretical and experimental results confirm that the free-
free coefficients are indeed higher than the ones used in the calculation.
Between the UV cutoff and the maximum of the observed spectral distribution,
one finds a number of discrete spectra. Prominent among these are the 0Z
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Schumann Runge lines which appear in absorption. Other spectra, such as
Nz+(1 - ) appear originally in absorption and change some time after the 2nd
maximum to emission. The Schumann Runge bands are of particular interest
because of a very strong sensitivity to temperature. Figure 1 shows the
potential energy curves of the two electronic states of 0z which gi3ve rise to
the S-R band system. Transitions from low-lying levels of the X Zg-

state are severely restricted by the Franck-Condon principle. Levels with
vibrational quantum numbers v like 3, 4, or 5 are much more likely to make
optical transitions, but these levels are not populated until the temperature is
high enough. The relative intensities of the various lines can be used to cal-
culate the population of the various levels, One can then attempt to interpret
these populations in terms of temperatures, At early times in the history of
an explosion, that attempt gives rise to contradictory results, which is an
indication that these states are not present in thermodynamic equilibrium
concentrations. At times around the first minimum the situation changes and
from then on the various levels have a temperature-determined population.

The calculations reported in reference 3 show that the Schumann-Runge
transitions are the dominant contributor to the abso?ption coefficient at low
temperatures., At sea level density, this temperature range extends to about
6,000° K and at 10~ times s-1 density to about 3, 000°K, at which point the
NO bands take over. It is important to note that there is no significant back-
ground of continuous transitions up to temperatures like 5, 000°K. This fact,
together with the appearance of bands in the observed spectra from explosions,
indicates that line effects may invalidate the use of smoothed out absorption
coefficients in calculating the radiative transfer of energy.

The Schumann-Runge and other band systems consist of exceedingly large
numbers of lines which are characterized by their wavelength, width, and
some measure of their intensity such as the value of v ot the center of the
line or the integral / oy d v " The wave lengths can be calculated for given
vibrational and rotational quantum numbers of the upper and lower state,

v'7 and v" J" , with the aid of constants given by Herzbergs. The line
widths are determined by pressure broadening and are assumed to be pro-
portional to the pressure with a constant of proportionality which has been
calculated by Margenau. The integrated absorption coefficient
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2
e
/“’ viv®* m Ny h tg,n v' SJ"J' (4)

line
requires a knowledge of four variable factors as follows:

1) The population an I of the lower level, which is assumed to be

in thermal equilibrium and therefore obtained from the Boltzmann
distribution

2) The electronic f value, which for 0, (S-R)6is assumed to be

f = 0.048 as given by Treanor and Wurster
3) The Franck-Condon factors g, 0 + 88 given by Fraser, Jarmain, and
Nicholls7.

4) The line strengths Sn , as quoted on page 208 of reference 5. The
integral given in equation (14)Jand the maximum b, at the center of the line
are directly proportional to each other. The factor depends on the line shape
and varies like the line width Av. Figures 2 and 3 show the envelopes of
various bands at 1, 000° K and at 3, 000° K.

Figure 4 shows the fractional transmission for several thicknesses x of
air of a number of lines in the (5-5) band. It is important to notice how these
lines become wider with increasing thickness. For very thin samples the
absorption u vx would be proportional to the thickness but this increase di-
minishes as the absorption becomes larger. Thus, the centers of lines where
the absorption is the largest grow less strongly than the wings, and this makes
the lines become wider. Since the absorption at the line center approaches
its full value in a relatively thin sample, the major contribution to the trans-
mission comes from the wings and the average transmission depends critically
on the minimum of y v

The procedure of integrating the transport equation, so as to develop as
much detail as shown in figure 4, is quite laborious and with more than
10, 000 and possibly as many as 100, 000 lines the amount of computation would
be prohibitive. There are, however, certain regularities which can be readily
noticed on inspection of band spectra, which suggest a simpler modification
of the above procedure. Figure 5 shows the densitometer trace of a typical
band spectrum attained with a high resolution Meinel spectrograph. The
point which we want to make is that the average absorption changes quite

slowly with wave length. The fact that figure 5 is an emission spectrum does
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not affect this argument since the ratio of emission and absorption is also a
slowly changing function of wave length. The gradual change of absorption
suggests that it may be sufficient to solve the transport equation properly in
a small number of fairly narrow frequency intervals such as the one shown
in figure 4 and use these results to obtain averages for the entire spectrum.

A machine code to do this has been written and has been very nearly
checked out. Details, such as optimal values for the width and the number of
intervals, have to be found by experimenting with this code. It is estimated
that an interval may contain an average of 20 and certainly less than 200 lines,
and that there may be a total of 20 such intervals.

The general procedure then is as follows. For a given time in the history
of the explosion at which density and temperature profiles are known, one can
obtain densities and temperatures along any ray through the fireball. One can
therefore calculate absorption coefficients along such rays for the selected
frequencies within each one of the narrow intervals. By integrating the trans-
port equation, one thus obtains the intensities [ which are then averaged for

v
each narrow interval to form Iv - . S / Ivdv . The next step is to inter-
Av

polate 'I—V with respect to frequency, and some work is currently underway to
devise a good procedure for doing this, The interpolated Ivis then integrated
over the entire spectrum to form

o©
I = / Tvdv‘ One can now calculate the cooling rate _dﬂl__ dQ, enter
o s

this into the energy equation, and advance the hydrodynamic calculation.

137




& AVNTVE T 7T

REFERENCES

Chandrasekhar, S., Radiative Transfer, Dover 1960

Meyerott, R, E., et al,, Of Quantitative Spectroscopy and Radiative
Transfer

Meyerott, R. E., Sokoloff, J., and Nicholls, R. A., Absorption Co-
efficients of Air. Geophysical Research Paper 68

Armstrong, B. H.. Holland, D. H., and Meyerott, R. E., Absorption
Coefficients of Air from 22, 000° to 220, 000°, SWC TR-58-36, August
1958

Herzberg, G., Molecular Spectra and Molecular Structure, I. Diatomic
Molecules. D. Van Nostrand 1950

Treanor, C. E,, and Wurster, W, H. Measured Transition Probabilities
for the Schumann-Runge System of Oxygen. Journal Chemical Physics,
32, 758, 1960

Jarmain, W. R., Fraser, P. A., and Nicholls, R, W,, Vibrational
Transition Probabilities of Diatomic Molecules; Collected Results
Astrophysics Journal 122, 55, 1955

138




TN-61-29

NUMERICAL METHODS
FOR HYDRODYNAMICS WITH RADIATION TRANSPORT

Dr. R. A, Grandey
Aeronutronic Division, Ford Motor Company

1. THE EQUATIONS OF RADIATION TRANSPORT.

The integrodifferential equations of radiation transport are obtained by
simultaneously solving the time dependent Boltzman transport equation for
the radiation, which is a continuity equation, and the equation expressing
overall conservation of material plus radiant energy. The energy equation

is written in the form

d-t P aEr"'VF = O.

Here Em is the matenal energy density, Er the radiation density, P the total
pressure, V the specific volume and F the net flux of radiation. The third
and fourth terms of this equation are expressed as integrals, over frequency
and direction, of the Boltzman equation,

The Boltzman transport equation gives the time rate of change of intensity
of radiation of frequency v traveling in a direction w. This intensity will be

a function of time and position:

IV,W B Iy'w(F, t, y, W)

where T is the position vector and t the time. The transport equation may

be written generally in the following form:

?..'%-%',w + (wW-V) I,'w = K PI,’ Pjy,w
- K:)PI’;\' + JPKy (W,w') Iv,w' JW'

The left side of this equation represents 1/c times the total time derivation of

(1)

I . The first term on the right represents photons removed by absorption

vV, w (ﬂ)
processes, K

being the absorption coefficient, The second term on the
right represents photon production by emission from the material, the third
term those photons lost by scattering, and the fourth those added by scattering

—
from other directions, W | into the direction W, In this equation P is the
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(s)

material density, jv wthe emission coefficient and Kv , scattering coefficient,
Our problems will assume slab or spherical symmetry, in which case
Iv w is a function of only one coordinate x and the angle 6 between the di-
’

rection of symmetry and the direction of travel of the photon in question:

Liw= Lu(xtve) - L (v, 4)

where | = cos 6. We may write equation (1) as

. 1 (-u?) - of-
&l%%vm Y, %‘Vw + '-‘—-z—;‘i- 3}-";/‘ = F[ KV,HIV,/‘ (2)

*isad+ [ PKGn) [, du'dg”

Kv is the total ""absorption' coefficient, i.e., the sum of the pure ab-

sorption and pure scattering coefficients, o¢ = 0 or 2 for slab or spherical
geometry respectively.

The net monochromatic flux, Fv , traversing unit area is a vector in the
x-direction with magnitude 2nc f Iv " pdp. The total flux F is defined by

the /dev or: =

F-F ‘“cff'lmﬂdﬂa’v (3)
o -|

The radiation energy density is the integral of I , over direction and

” .
= 27 d
v f [ IV,A A dv (4)
o -
Thus the energy equation may be written as:

-,‘5(3'5"'+P )+zn//i‘:"~“d;¢dv+ (5)

2"] ' ml).,ad/(dv o
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The transport equation is applied to assist in evaluating the integrals appear-
ing in this equation, ‘
The term jv. in the transport equation represents both spontaneous and
induced emission. Its form is sensitive to whether or not local thermodynamic
equilibrium exists for the material, If local equilibrium is assumed, it may
(a) and the Planck
spectrum. By combining this with the absorption term, equation (2) becomes

be expressed in terms of the absorption coefficient Kv

19l aly, (1-u?) 3Ly - (6)
M AN Y T W

o T (s
K-€ )8 ) <Ly ]ek L

+ ij:”lA,;c')L, o ude

In our problem, scattering may often be ignored in comparison with the

emission process. In this case,

)
L 2hn s 3ot o U2 3ot 2 ok ®)

[ib(:_ P_1) -I,/A] A, [J Iy)(]

Generally, we must solve equations (5) and (7) subject to the appropriate

(7)

boundary conditions. Introduce an integrated intensity

2 TrfoI " dy
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by integrating equation (7) over dv:
(8)

131 aI (1- %) aT -1
c 3t P Y X 3% %% aEY Vil A I”ﬂdv
where )‘t' the transport mean free path, is defined by A-' J Ay Jy Av

¢ foJ,.dv

and a is the Stefan-Boltzman constant, The second term in equation (5) may
be eliminated by integrating (8) over dp:

i S,'I dv = \aT" ﬂ A Lyu dudv -
S[AAI ) A Ty

ot: L'J.EM+P$Y)+)\ al " ffh—'de,udy__éixg!
[('ﬂ)él-ﬂ/l]o',«-

Our problem is to solve equations (8) and (9).

(9)

All equations are linear in the radiation intensities, Let us therefore write
the monochromatic intensity as the sum of two terms: one including radiation
due to material at a local temperature T, and the other radiation coming from
an external source in transit through the material. The first term will include

radiation flowing into the material from neighboring material not necessarily

at exactly the same temperature, That is, define Iv p e 11:: }: + IEi " :
Ia IP + IE . where the superscripts stand for Planck and external, and write

separate continuity equations for the two components:

(10)
P

31P 1~ u?
é')‘f"’/(%%-}’—‘—%‘xg—)%} = jh .Iy,/(
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(11)

e ~u*) 3l 15
& g%_v,;b + M AI»/L + "ﬂ'—zfi— %{’# = =M L‘,/(

Specializing to the case of & = 0 for simplicity, the energy equation (9) may

be written as:

HeEm PR )+ [NaT - [N 1] e ]

ﬁ) I Ldndy =0,

The diffusion approximation for the Planck spectrum is obtained by assuming
that pK (a)

(12)

is very large, or that A\ v is small compared to dimensions over
which quantities vary appreciably. In this case, an expansion of IPV as a

power series in |t converges rapidly, The result of such an approximation is

the usual diffusion equation; plus an additional term involving IE

(13)

GilEaraT ")+ Y -5 2 (1, 2T ﬁ»"l,ﬂaﬂay -0

where )‘r' the Rosseland mean free path, is defined by

f‘;" )Jv

n
r j aJy aT3 hy b-r

In several applications, it may be possible to make use of equation (13) in
treating the Planck radiation, using equation (11) to treat the transport of
external radiation through the material, In cases where the diffusion approxi-
mation is not valid for the Planck spectrum, a second appreciable simplifi-
cation is still possible. Returning to equation (7), the right hand side of this

equation may be written A\ ;1 (J v -Il:; " -IEV m ). The integral of the first term
’ (]
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of this expression led to introduction of the transport mean free path, xt . It
is seen to be appropriate to use this same mean free path as an approximation

in equations (10) and (12) in the term involving ¥,

IS ANV LT
o3 4% = N (H-T7) e

Hers PR R (Vo) ([ T o
e =0

(15)

We shall have to follow the changing frequency spectrum of IEV’ " in time as it
transports through the material, The number of frequency groups necessary
and the expense of treatment will depend on the shape of the spectrum and the
precise dependence of A y on v,

Inclusion of the pure scattering terms and the extra terms for the spher-
ically symmetric case do not introduce any difficulties and have been omitted

only for convenience in the discussion.

2. NUMERICAL INTEGRATION OF THE TRANSPORT EQUATIONS,

Three approaches have been taken toward solving the transport equations.
The chief problem is treating the angular integration, An immediate extension
of the diffusion approximation is to use higher order terms in p, or, equiva-
lently, to expand I (1) in Legendre polynomials, since one can then make use
of the various recursion and orthogonality relations existing. This approach
leads to a set of L + 1 equations for the Legendre coefficients if polynomials
up to order L are used in the expansion. I may be defined by an L. + 1 com-
ponent vector consisting of the Legendre coefficients and finite difference
methods applied to the resultant vector equation, The coefficients in the vector
equation are L + 1 by L + 1 matrices. The difficulty of this so-called
"Spherical Harmonic Method'' is that an implicit difference scheme is required
for unconditional stability and the scheme must be implicit both with respect
to the space coordinate and the ''1 coordinate,' yielding very cumbersome
equations,

A second approach is based on the '"method of discrete ordinates,' The
distribution function is sampled in each of a finite number of directions, and
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separate equations written for the individual directions. The two approaches
are related, inasmuch as if L + 1 discrete angles are used for sampling, the
solution can be fitted with the first L spherical harmonics. Wick and
Chandrasekhar developed this approach independently using a Gaussian quadra-
ture approximation for the angle integrals. It can be shown that the results
from this approach are identical to results of the spherical harmonic method.
This method, which uncouples the equations angularly, is much more
tractable than the spherical harmonic method if it is desired to obtain un-

conditionally stable finite difference equations,

3. THE CARLSON s METHOD.

The Sn method is also a discrete ordinate scheme in carrying out the
integration over angle, It differs from the Wick-Chandrasekhar (W-C) method
in several respects, The centering with respect to p is done differently and a
trapezoidal rather than Gaussian quadrature is used to perform the integration
over angle,

The Sn method divides thez;{. interval into n subintervals: -1 a ko P, <~ =
- <Kp, = +1. If pyz -1+ /n the p -mesh is said to be standard. Other
choices may be appropriate to some problems,

In the W-C method, the transport equations are centered at the y -mesh

points. Sn centers these equations at the midpoint of the u -intervals:

P 2 P
1 bIP 2. = 4t AI jo'lr “/"/(io'h.) AI (16)
@ 5 = Hem Sy T

PN -1 Jfocien)

This set of n equations in n + 1 unknowns is completed by adding the
equation centered ati z o (pa= -1):
(16a)

oL, ol. . y/aT’ ¢f
é—-é? = 5—%— +)\t(-§:—. _Io)
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Assume that IE may be represented by K frequency groups

P
IM - ;| 1":/‘( and write separate transport equations analagous to

equations (16) and (16a) for the K components:

_.élk,jo'l ;o _A_I_g_,o'h. o((,'ﬂlt 2 ‘L'Kl (17)
C At Ty

¥
-A: Ix jc—‘lz(o < " <J)

P Y (17a)
CS%K’ = % A IKD

The number of angular groups required for accuracy may be different for

I" and IE .

spectrum and an 5; integration for the ''external' radiation,

P It is planned to allow for using an SI integration for the Planck

3.1 The Su Difference Equations.

Equations (17) and (17a) will be used to illustrate Carlson's differencing
methods. A more complicated procedure is required if anisotropic scattering
(like Thomson scattering) is included but we shall not discuss this in the
interests of simplicity and time. We shall drop the K subscript for simplicity.

Equation (17) is written in terms of the intensities at ;. -mesh points j and
j+ 1by performing an integration over . under the assumption that the intensity
I is linearly dependent on ;1 in the interval (a trapezoidal approximation):

I =I-+(I I-.////{,,
Ay - _L-H.(QL- )._IAJ:.L

X ,({J -/(J -
Ae . L -1,
W M- M
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Ly . 3l
éa'{/“ %{'” (at 'é’l“"),%-,%,

The above are introduced into equation (17) and an integration performed over
p from ""j-l to p.j. We note that

jh.,,d« < 3L+ L) = AT+ L)

S/ql'”ﬂ =Z-J (&I JJI)

3

S(' A )%"A‘ = é’[) bi(L' 'L'-.)

where: aj = 'é' (Zn,l.l) 4., )
a;= é‘(/’() +z/(j-l)

bj=2 (3~ t; ., %)
3 (/‘(J ~ ;- o)

Introducing these into equation (17) and multiplying by Z/lj:

(18)
[d$e+aid+Sbi+ A I + [ % %*%b5+x'_“j_|=0
(17a) simply becomes:
[f’:%{ :%(+)\"]Io =0 (18a)
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Normally, in spherical systems the radiation streams in the direction of
increasing p. The angular dependence is treated by arguing that the differ-
encing should be backward with respect to the direction of flow, It is on this
consideration that equations (16a) and (17a) are for p = -1 rather than for
p =+ 1, Equation (18a) is solved for I, which is inserted into the equation
involving Io and I1 which is solved for Il' etc,

We shall now introduce spatial coordinates Xm which define a spatial mesh

with an interval b= X_ =X and the temporal coordinates tl'whic‘n define a

temporal mesh with an interval by = tl+1-t‘e . Let us examine equations (18)

and (18a) centered at time t and at the spatial coordinate Xm:
xM-l x»\ XM“
t!{—l t‘/”

4 t!
Xm-2jc % | Xm-dje8y 1 Y —3;c 8y X @;cH
A Aam—
Xm-1 Xm Xmei

Photons arriving at point Xm at time t £+1 started from a point on the line t“

a distance acb from point e, They traveled along path 1, 2, 3, or 4 depending
on the value of acd. The spatial and temporal derivatives occurring in equation
(18) are formed along the appropriate legs of the triangle traversed by the
photons in question. For example, if the photons follow path 1 (if acb>Am).

the _iii appearing in (18) is differenced as

T o LM e )A—li(tl"lxm"l

)
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ol
and the —3—;’ as

o, = Lt X - L (4 Xomas)
it 51 A

The result of the above will be an implicit finite difference equation for

I‘1 (tIT 1 Xm) s Ijl*;:l Generally, similar equations will exist for each
frequency group, and it will be necessary to definel £

k,j,m’
It should be noted that the transport equations are coupled angularly through

the scmng igt;egral and, in the case of spherical symmetry, through the
term - —5: . In slab geometry with no scattering the equations are not
coupled angularly and an Sn -type calculation would not be required,

A third approach was mentioned, It is also possible to write the angular

dependence in an integral form and apply iterative techniques which will con-
verge to the correct solutionz,
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SHOCK-INDUCED REACTIONS*
Dr. O. A. Nance
E. H. Plesset Associates, Inc,

In discussing the possibility of shock-induced reactions in condensed
phases, we find that even reliance on the weak reed of chemical reaction
theory eludes us. We can only hope to avoid the nonsequitur that experi-
mental evidence provides many examples of this phenomenon,

The framework of gas phase reaction kinetics is dually supported, by
thermodynamics and by the ''absolute' rate theory. Classically, reactions
are supposed to occur by '‘activation' of a molecule through collision or ab-
sorption of radiation. If the activated molecule simultaneously or subse-
quently encounters another appropriate molecule, a bimolecular reaction
may occur. Alternatively, the activated molecule may decompose in a uni-
molecular reaction. To various degrees of sophistication, we may calculate
the number of collisions occurring as a function of concentration and tempera-
ture.

Calculation of the rate of reaction from the number of collisions alone
usually leads to a gross overestimate of the rate. The next level of approxi-
mation requires an estimate of the energy involved in collisions and an esti-
mate of the probability of transferring an effective amount of energy to one
of the colliding particles. The first formal expression is due to Arrhenius

and takes the form k = Ae'Ea/RT'

where k is the specific rate constant, A
is a frequency factor and Ea is the energy of activation. This expression
was inherently an empirical description of the variation of reaction rate with
temperature. '"'A" can be related to the number of collisions but with only
indifferent success except in the case of simple bimolecular reactions be-
tween atoms.

If we add the concept of the Maxwell distribution, we gain the concept of
the fraction of molecules capable of undergoing effective collisions and the
concept of at least a quasi-equilibrium state which will maintain the popula-

tion of '"hot'' molecules. Use of this new information improved the calculation

* This report is based on preliminary results of work sponsored by the
Richfield Oil Corporation. Potential applications to petroleum technology
are subject to patent rights sought by that Coinpany.
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of the frequency factor in simple cases but gave no clue to the predictability
of the energy of activation.

With the advent of the absolute rate theory, a major practical advance
occurred; unfortunately the quantitative gains and theoretical validity were
severely limited. In this theory we consider a potential energy surface rep-
resenting the reacting system in the pertinent region of configuration and
momentum space. One assumes a quasi-equilibrium distribution of the macro
state with respect to this surface and examines those portions of the potential
energy surface with which externally recognizable chemical changes may be

correlated. In the customary notation, we write

. =(l‘£> L8 77Re -aH #/RT _ kT Q¢ -8E8/RT
T h nQi

h

Where kr is the specific rate constant
T is absolue temperature
h is Planck's consiant
AEQ is the difference in "ground state" between normal and activated
species
Q represents a partition function
AS#is the entropy of activation

AH, represents part of the energy of activation

#

The superscript # refers to the activated species and the subscript #
refers to the quantity after the '"reaction coordinate' is removed. The pro-
duct of Qi over 'i'" is necessary when several reactant species are involved.
It will be necessary to refer the reader to standard texts or reference works
for discussion of the development of these expressions.

The point of outlining the background briefly here is to permit a dis-
cussion of the situations in which misapplication is possible. The first set
of terms defines the rate in thermodynamic variables; this is of value pri-
marily in recognition of the source of a temperature dependent and a tem-
perature independent term, together with clues to the application of
statistical mechanical concepts. One will note that the factor .1“11 appears
in both expressions and that it has been borrowed from AH ? in one case
and from Qf in the other (noted by demotion of the symbol # to a subscript).
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In the second expression, the partition functions are taken with respect to ~
a ground state in each case and the ground state factors are combined in the
term e~ AES. In addition, the partition function has been depleted by the N

factor .lél; this factor is usually interpreted as the partition function of the

""reaction coordinate', treated as a very ''stiff'' vibration. That is, it is
assumed that an important characteristic of the activated complex is the
occurrence of an appropriate amount of energy in a '"degree of freedom' of
the complex such that motion in that one coordinate can produce the observed
macroscopic reaction. In terms of the potential energy surface, motion in
this coordinate leads from ''reactant' to ''product'' portions of the energy sur-
face. Roughly speaking, AES , is the least upper bound of the energy required
to surmount the potential barrier and thus is in excess of the quantities AH
or Ea which are averages of the energy barrier from a given level to the
transition level, weighted by the energy distribution for the reactant species.
For gas phase reactions of simple species, the partition functions may be
approximated and estimates may be made of the partition functions for postu-
lated activation configurations. Furthermore, we have a reasonable idea of
the use of temperature, both to describe the energy partition and to calculate
the number and effect of collisions. We can also estimate the effect of pressure
on the rate of reaction and on the distribution of products, if several reaction
paths are possible. Increasing the pressure on a gas raises the temperature
and increases the concentration of reactant species; it also increases the
probability of deactivation and, unless the activated complex is more compact
than the separated reactants, may lead to increase or decrease in reaction
rate, depending on the specific reaction mechanism.

In the gas phase, the probable collision orientations and transfer of energy
between degrees of freedom is also somewhat amenable to treatment. In
particular, the energy content is not readily exchanged between translation
and either rotation or vibration, i.e., there is difficulty in transferring -
translational energy and there is a corresponding persistence of vibrational
excitation when it does occur. The effectiveness of vibrational energy in
complex molecules is complicated as well by the possibility of delocalizaticn
and localization which arises from anharmonic contributions to the potential

functions.
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Statistical theory of transport.

The fundamental questions which apply here simply emphasize the limita-
tions of reaction theory in general. One of the fundamental difficulties here-
tofore has been that theories predicting reaction rates have postulated equili-
brium states and used thermodynamic expressions more from desperation
than sagacity. A fruitful and logical point of attack must lie in the larger
question of description of the approach to equilibrium and irreversible pro-
cesses in statistical mechanical terms,

In attempting to predict kinetic processes we are attempting to assess
the behavior of perturbed regions, molecular aggregates, or individual
molecules in a macroscopic system which may be at or near equilibrium.
This point has long been recognized, e. g., Kirkwood made significant contri-
butions and was, at the time of his death, a leader in this technique of
approach.

It was the author's original intent to discuss nonequilibrium theory in
some detail but it became increasingly obvious that such a discussion was
impractical under the circumstances. The reader who wishes to pursue the
matter is referred to an excellent review article by S. A, Rice and H. L.
Frisch which appeared in vol. 11 of the Annual Review of Physical Chemistry
(pps. 187 - 272) (Ann. Reviews, Inc., Palo Alto, Calif. - 1960) or to recent
papers by Kirkwood and his co;laborators. particularly S. A. Rice.

R ti . i i pl )

With the foregoing discussion in mind, great audacity is required in ap-
plying the theory of gas phase reactions to condensed phases and shock phen-
omena, To the extent that shocks can raise the local energy content sub-
stantially, we can begin to consider reactions in terms of the general theory.
Activation leading to unimolecular reactions can probably be accomplished by
collisions between neighboring atoms or molecular groups. In the sonic
approximation, the transfer of energy to vibrational modes of a crystalline
stracture is known to’be an effective means of energy transfer and we would
expect individual species to be subjected to periodic disturbances. Since these
disturbances have periodscharacteristic of the lattice modes, the coupling to
atomic vibrations of much higher frequency would be of comparatively low
efficiency. In the transonic and strong shock regimes, the efficiency of

transfer should appreciably increase. Furthermore, loss of bond vibrational
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excitation should be inhibited by the factors which by-passed molecular
excitation in the sonic case. Some measure of the vibrational excitation can
be obtained in gases by observing the dispersion of supersonic waves; there
it is observed that vibrational excitation by one or more quanta can be ob-
tained in the range of 102- 105 sound-induced collisions. In solids, the situ-
ation is more complicated, theoretically and experimentally, but it has been
observed that the lifetime of vibrational excitation is of the order of 10-9
seconds in many cases,

The partition functions for an organic material should be markedly differ-
ent in gaseous and condensed phases because in condensed phases:

1. the translational modes are strongly coupled to the lattice modes;

2. the rotational degrees of freedom are severely restricted by the

limited free space in condensed phases;

3. the vibrational modes of molecules probably have higher effective
anharmonicity because of the intermolecular force fields, but are
sufficiently different in frequency from the lattice modes to have appre-
ciably different energy content;

4, there is a high degree of degeneracy in the lattice modes.

The entropy of activation in the gas phase may be considered in two parts.
The first of these arises from the relative orientation of the colliding mole-
cules at and during collision, and the second derives from configurations
assumed during the free oscillation and rotation subsequent to the collision.

In the case of condensed phases, both sources of variation of orientation are
severely restricted by the nature of the state, particularly in cases where
mechanical treatment or preferred bonding configurations are present during
reaction or fabrication of the material.

By analogy with phenomena observed following irradiation of molecular
aggregates, the predominant reactions appear to be unimolecular digsociation
and reaction of activated sites with neighboring atoms or groups. A special
case is that in which hydrogen atoms, produced by bond rupture, combine
locally or diffuse to react at sites somewhat distant (usually 100 angstroms
or less) from the point of origin.

Conventional reactions.

With the differences noted, it should be possible to treat reactions in
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condensed phases by the same broad theoretical treatment and some tech-
niques parallel to those used in gas phase kinetics. The temperature is now
replaced by the internal energy of the material (with due regard to potential
difference in partition functions); the expected duration of the reactions is
that of the pulse duration plus one or more characteristic relaxation times
which might be distinguishable by variation in product distribution,

The orientation factors are fairly stable and might be treated either by
straightforward probability theory for isotropic material, or by considerations
of random orientation plus the concept of crystallites familiar to workers in
the field of plastics. Since some control over samples is possible, one might
be able to use variation in sample fabrication to vary reaction rate and mech-

anism in experimental studies.

¢

ri ntal clues.

The facilities required for study of shock-induced reactions in condensed
phases are not readily accessible. One requires instrumental bunkers in
locations fairly remote from living areas, a supporting staff capable of
sophisticated manipulation of high explosives, and rather elaborate sample
containers which can survive the shocks and preserve the samples for post
reaction analysis. Needless to say, the experiments are also rather expen-
sive.

Some work has been done in support of the '""Plowshare'' program by LRL
and some work has been supported by the Richfield Oil Corporation at SRI.
There are also scattered bits of data which come as by-products of military
programs.

One can summarize the available data crudely as follows:

1) severe decomposition of organic materials is produced in times of the

order of microseconds by shocks of 250 kb or hiéher;

2) limited changes in materials occur in the same time intervals aown to

the order of 20 kb.

Calculation program.

Preparation of a numerical machine code is underway in support of this
program. The code consists of a conventional Lagrangian hydrodynamics

calculation supplemented by auxiliary sections for reaction calculation. For
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materials in which reaction is possible, the logic of the hydrodynamic calcu-
lation is interrupted at the point where the pressure and internal energy have
been calculated.

Two possible types of reaction have been provided. The first type is a
""glow'' reaction for which the rate equation has a unimolecular form and the
rate constant is written in superficial Arrhenius form, i.e., the rate is first
order in concentration and the rate constant consists of the product of a con-
stant and an exponential function of internal energy. During each time cycle,
the differential change in concentration and energy is calculated for the pre-
dicted reaction and the results used to correct the hydrodynamic quantities,

In the event that changes produced by the reaction are comparable to changes
produced by the mechanical factors of the shock, an additional iteration is
required. In the cases investigated to date, the energy absorbed or produced
by the reaction is a small percentage of the total and no additional references
to the hydrodynamic portion are required. It is obvious, however, that highly
endothermic or exothermic reactions could materially affect shock propaga-
tion. A limiting case is that encountered in detonation of explosives, in which
the reaction energy is the mechanism for generation of the shock. It may be
noted in passing that some of the difficulties in the theory of detonation which
have been ascribed to state behavior are probably due to neglect of the effect
of high pressure on the reaction rate.

Some preliminary calculations have been made on the effect of an under-
ground nuclear explosion on petroleum bearing formations. An underground
nuclear explosion is characterized by initially high attenuation of peak pressure
with distance, because of both geometric and energy absorption factors. At
the same time it is characterized by persistence of pressure which is greater
by several orders of magnitude than the impulse duration of conventional ex-
periments with high explosives. Using reaction constants derived from con-
ventional petroleum technology, the calculations indicate extensive chemical
reaction in regions near the detonation with a sharp decline in the amount of
reaction at distances where the peak pressure is below about 100 kilobars.
This result is to be expected because of the conservative approach in assign-
ing reaction parameters, but the results compare well with the limited ex-
perimental data.
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We have also proposed that there is probably another type of reaction
accompanying shocks and which we have designated the ''fast'' reaction. 1t
has been observed in shock tube experiments and in detonation of explosives
that the observed rate of reaction is frequently higher than that predicted by
the theoretical ''temperature'!. J. von Neuman commented on this point in
discussing detonation theory of explosives and remarked that the behavior
seemed more like that resulting from a mechanical blow than from thermal
excitation. He had calculated a reaction rate by a method comparable to our
""glow'' reaction and found the predicted rate to be less than the observed rate
by a factor beyond that which could be explained by parametric ranges avail-
able in his theory. Unfortunately, he did not pursue the point.

We have made provision for this second type of reaction in the code but
have not used that section, pending further theoretical work. One can, how-
ever, discuss some possibilities in phenomenological terms. One postulates
that, as the shock strength increases, there is a point at which the particle
velocity exceeds that for which the predominant energy transfer is to bulk
modes of the material (lattice modes for crystals or crystallites). The effect
would then be to transfer increasing fractions of the dissipated shock energy
to vibrations of the molecules. On the basis of dispersion of supersonic waves,
there is the indication that bond vibrational excitation persists with character-
istic half-life of the order of 10-9 second. With vibration periods of the order
of 10"13 second, there is ample time for reaction or internal transfer of the
vibrational excitation. Since unimolecular decompositions are the result of
localization of energy in vibrational modes, the effect of relatively direct
transfer of shock energy to vibrational excitation would produce reaction
rates far higher than those predicted on the basis of the bulk '"temperature"
of the material. At present, quantitative prediction of the effect seems
impossible, and consideration of secondary factors such as the effect of
orientation seems pointless except for speculation. Nevertheless, there is
a possibility that recognition of the qualitative features of such a reaction
might permit the design of fruitful experiments,

From the standpoint of the use of a hydrodynamic code, these considerations
emphasize the limitations of a formulation which uses the Richtmyer - von
Neuman '"Q", since the region of the shock front which is so grossly dis-
torted by the use of an artificial viscosity is just the region in which
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accelerated reactions would occur. In addition to consideration of experiments
to establish reaction parameters, we are considering known and pursuing novel
techniques for treating the shock front phenomena in condensed phases. At

present, we have no significant contribution to report.
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CALCULATION OF SPALL BASED ON A ONE-DIMENSIONAL MODEL

Mark Wilkins
Lawrence Radiation Laboratory

INTRODUCTION.

Consider a one-dimensional model of an HE metal plate system. Since the
pressure pulse from the HE at the HE-plate interface decays rapidly with time,
a rarefaction wave proceeds forward into the plate, degrading the advancing
pulse from the rear. Upon reaching the front surface of the plate where the
normal stress must be zero, the pressure pulse is reflected as a receding
rarefaction wave. This wave drops the pressure pulse from its initial value
to zero; the rarefaction wave proceeding forward is already dropping the
pressure such that when the two rarefactions cross the pressure falls below
zero. The negative pressure or tension will be related to the amount the
pressure has dropped behind the initial pulse when the rarefaction from the
front surface has reached a given position. In figure 1 the tension will be
approximately the pressure drop '"h'" that has entered the material before the
receding rarefaction has reached the metal-HE interface and a pressure pulse
has been transmitted back.

If either the magnitude or rate of increase of tension is great enough, the

plate may fracture or spall.

THE CALCULATIONAL MODEL.

The one-dimensional hydrodynamic equations were solved by the finite
difference technique of Von Neumann and Richtmeyer. 1 The tension profiles'
for three different plate thicknesses were calculated using a high-speed com-
puter together with an assumed equation of state and a method of simulating
the burning of HE. The equation of state of the metal in compression was
obtained from experimentally measured Hugoniot points. However, in the
tension region, a Hooke's law of the form P = u(‘g‘o -1) was assumed. Here
Po is the reference density expressed in gms per cc. A perfect gas law
equation of state was used for the HE,

Since the finite difference approximation is based on a Lagrangian de-
scription, the physical quantities of each mass element are known at any
instant of time. Consequently it is possible to allow the material to split at
a zone boundary by introducing the appropriate free surface boundary
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conditions. By this technique naterial separation or spalling may be
achieved when the tension falls below a specified amount. Other spall cri-
teria based on strain rate, internal energy, momentum transferred, etc.,

may be easily introduced.

EXPERIMENTAL TECHNIQUE.

To measure the front surface velocity of HE-driven plates, the usual pin
technique and optical methods were used. The experiments used 10cm of
Composition B ignited by a plane wave generator. The other dimensions
were chosen to maintain a one-dimensional model during the time of interest,

To measure the change in velocity of the front surface of a metal plate, a
magnetic method was developed. The plate is the conductor advancing
through parallel magnetic field lines. The voltage generated per unit length
of the plate is described by

voltage

length of plate

< <
1]

% = vxB velocity

B « magnetic field

In order to measure the voltage and hence the plate velocity, two small
wires are placed normal to the plate. As the plate advances into the wires,
contact is maintained and the voltage as a function of time is recorded on

oscilloscopes.

DISCUSSION.

By examining a plot of the front surface velocity time history of the plate,
successive accelerations may be discerned. The time interval between con-
secutive pushes is equal to the transit time of a receding rarefaction wave
plus the time of a compression wave. From the previously determined
equation of state of the metal, the shock velocity at the pressure given by the
HE can be calculated. The velocity of the rarefaction wave is very nearly
equal to the shock velocity, so an easy calculation gives the time interval be-
tween consecutive accelerations of the plate front surface.

The time interval calculated from this simple model agrees with the
solution given by the difference equations and also with the experimental
results for thin metal plates. As the thickness of the plate increases, the
time between consecutive accelerations is longer than the calculated times,
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It is assumed that the plate has spalled or fractured and the previous simple
calculation is no longer valid, A complete analysis of the wave interactions
together with a criterion for fracture verifies this assumption. The results
of the finite difference calculations which take into account the spall phenome-
non correctly predict the time intervals between accelerations found experi-
mentally, .

Intuitively, increasiﬁg the thickness of the plate should have the following
effects:

1. .A larger part of the rarefaction wave could enter the material.

2. The pulse shape is changed, causing higher strain rates.

3. The time which a specified plane in the plate is under tension will

increase because of the increase in transit time,

Any of the above mechanisms may cause the maximum dynamic strain in
the plate to be exceeded, thus allowing the material to fracture or spall,

Other forms of the equation of state in the negative pressure region as
well ag different spall criteria have been investignted_on the computer. The
simple model presented here {llustrated the effectiveness of the computer as
a method of analysis.

RESULTS.

Figures 1, 1A; 2, 2A, and 3, 3A illustrate the results of finite difference
calculations which do not contain a spall criterion and the corresponding
experimental results. Figures 1 and 1A show the results of 10 cm of HE
driving a 0.375 cm thick uranium plate. The agreement between the experi-
ment and calculation is good and it is concluded that the plate did not spall.
Figures 2, 2A, and 3, 3A show the corresponding results when the plate has
a thickness of 0.545 cm and 0.75 cm. For these cases the acceleration times
as measured by experiment do not agree with the calculated times. The con-
clusion is that the material has spalled and momentum can no longer be trans-
ferred. Thus the spalled portion of the plate flies off with the momentum
characteristic of the pressure from the head of the original shock minus the
amount of momentum transferred back by tension before spall occurred.

The decrease in front surface velocity between accelerations shown by
the calculations results from the tensions in the plate. Experimentally this
is not seen, since only average velocities are measured in the time interval

between accelerations.
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The calculations were repeated using a spall criterion of -0.50 x 1012

dynes ; i, e., the material was allowed to separate if the tension at any point

sz

in the material exceeded this amount, Figures 4 and 5 show the results of
these calculations as compared to experiment.
Similar calculations using other thicknesses of plates, and a spall criterion

based upon tension of about -. 050 x 1012 %ﬁ?f‘i agreed with the experiment.

The assumed equation of state in the region of negative pressure and the cri-
teria for spall used are certainly not correct in every detail; however, the
overall good agreement with experiment is justification for applying the tech-
nique to other HE metal plate systems. |

CONCLUSION.

As stated in the first section, spall results when two rarefactions cross.
An obvious method to defeat spall would be to cancel one of the rarefactions.
To accomplish this a void can be placed between the HE and the metal. The
transmitted shock into the material now has a rising profile instead of a pro-
file that falls behind the shock front. Figures 6 and 6A show the results of
calculation and experiment where a 1.5 cm void was introduced between the
0.75 cm plate and the HE.

The experimental methods, while accurate for measuring the changes in
front surface velocity, only give average velocities during the intervals be-
tween accelerations. It would take separate experiments to establish the
slowing down of the front surface as predicted by the cnlculat?ons. Experi-

ments of this type are presently being conducted.

(This document was originally released
as UCRL 6356)
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DYNAMIC LARGE DEFLECTION OF SHELL STRUCTURES

Dr. W, Herrmann
T. H. H, Pian
J. W. Leech

Aeroelastic and Structures Research Laboratory
Massachusetts Institute of Technology

The problem considered concerns large deformations of shell-type
structures subjected to non-uniformly distributed intense loads of very short
duration. A brief review will be given of the methods and assumptions on
existing dynamic analysis of elastic and plastic structures.

Where the impulse is sufficiently low, only elastic deformations result,
The problem of lateral motion (normal to the shell surface) is somewhat more
difficult than that of the longitudinal motion. In the case of elastic deforma-
tions, the equation of lateral motion involves a fourth-order differential equa-
tion while the equation for longitudinal motion involves only a second-order
differential equation,

Transient solutions of lateral elastic motion can be obtained by the
classical normal mode solution or by the wave solution. When the duration
of the applied dynamic load is not too short, the normal mode method is the
suitable choice. However, for problems which involve discrete pulse loads
of very short duration, the convergence of the normal mode solution becomes
questionable and the wave solution must be adopted. It has been shown, how-
ever, that if elementary beam theory is used the resulting flexual wave
propagation leads to dispersion. The resulting phase velocity is found to be
inversely proportional to the wavelength. For a wave of infinitely short
wavelength the propagation velocity is infinite. One can thus conclude that
elementary beam theory is inadequate for short impulsive loads because it
leads to the physically impossible conclusion that disturbances are propagated
instantaneously, throughout the beam, Refinements to elementary theory
have been made by Rayleigh and by Timoshenko by taking into account the
rotating inertia of the beam cross section and the transverse shear deforma-
tion. From this improved theory it can:be shown that there are two types of

waves propagated along the beam, one of which involves bending moment and
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cross-section rotation while the other involves transverse shear force and
lateral displacement. The two groups are traveling at different propagation
velocities but they are coupled with each other, and the shape of each wave
changes completely. The coupled wave equations can be solved by the method
of characteristics.

Studies of plastic deformation of beams caused by lateral impulsive load-
ing are of recent origin, having been initiated in this decade. Most of the
studies have been based on simple beam theory with the moment-curvature
relationship being considered as elastic-plastic (figure 1. a) or rigid-plastic,
(figure 1.b) and the plasticity being described generally as either perfectly
plastic (figure 1. a and b) or as linear strain-hardening (figure 1. c).

Analyses of elastic-plastic beams have also been made by using the
normal mode approach. In this analysis the solution must be divided into
individual phases. When the bending moment at any point reaches the yield
bending moment, M. a single plastic hinge is formed and in the subsequent
period the beam must be considered as two elastic beams connected by the
hinge. By considering the proper continuity-relations between displacements
and velocities at the joint, the solution can be established.

Solutions of lateral motion of plastic beams have also been obtained using
the wave propagation approach. The solution by Duwez, Clark, and Bohnenblust
is based on simple beam theory while the solution by Plass is based on an im-
proved theory taking into account the rotational inertia and the shear deforma-
tion. These authors, however, considef only the problem of a semi-infinite
beam subjected to a lateral disturbance at one end.

All the work on plastic beams to date has emphasized the permanent
deformation due to the impulsive loading. For the cases where the plastic
deformation is much larger than the elastic deformation, the simplified
rigid-plastic analysis is justified. From the basic assumption of negligible
elastic strain it can be concluded that the motion of the beam involves only
rigid body motions of various beam segments which are connected by plastic
hinges. This type of analysis was first developed by Lee and Symonds and
was followed by other authors. A simple example using rigid-plastic analysis
is given in the following.

Consider a simply supported beam acted on by a uniformly distributed
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Figure 1, Idealized stress-strain relations
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impulsive load p(t). (Figure 2) When the applied load is small, such that
the maximum bending mument is less than the yield bending moment, the beam
remains rigid. The maximum bending moment which occurs at the mid-span

is equal to p}lz . Thus when p « 8 M_ . a plastic hinge is formed at the mid-

span. If the applied load further increases, the beam will move with two rigid
segments rotating about the end supports. The magnitude of the angular
acceleration of the rigid segments must be such that the bending moment at the

mid-span is maintained at Mo . From figure 2 we obtain

pjz - m.ej3

zx M

8 24 o
or [- - 24 3 (5’-'4'E M )
S _rn7_ 8 - o

When the impulsive load is increased continuously, a point will be reached
when the location of maximum bending moment begins to spread outward from
the mid-span point. This is the third phase of the motion, when two plastic
hinges begin to appear and the beam will move with three rigid segments. Two
of these segments rotate about the end support while the segment at the center
undergoes uniform translation (figure 2.f.) The plastic hinges are moving
away from the center when the load is increasing and they are moving toward
the center when the load has been released. The rigid-plastic analysis involves
essentially the determination of the motion in the various phases until the ve-
locity of the beam becomes zero everywhere, and the final plastic deformation
can be evaluated. The propagation of the plastic hinge in the rigid plastic
analysis is not of the same nature as the propagation of elastic or plastic waves.
In the present case, there is, in fact, no inertia associated with the moving
plastic hinge.

Another refinement of the plastic beam analysis is the inclusion of the
axial load effect on the yield bending moment. For a beam restrained at both
ends from longitudinal displacements, axial tensile stress is developed when
the deflection of the bearn becomes larger than the thickness. For a rigid-
plastic beam of rectangular cross section the magnitudes of the bending moment,
M, and the axial force, N, at the yield condition are related by the following

interaction equation:
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M 4 (.u.)z .1
MO NO

where M‘o = ylelding bending moment when the axial load N is zero and
No = ylelding axial load when the bending moment M is zero.

It can be seen that in the initial phase where the deflection and the axial
load are small, the plastic work involves essentially bending at the plastic
hinge. However, when the deflection increases, the axial tensile load also
increases, and the plastic work will involve mainly axial strain instead. of
bending strain. In the limiting case where the axial load becomes equal to
No » the beam becomes a plastic string under constant tension No . (Thus
this last phase must be treated differently). Such an analysis was made by
Symonds and Mentel, A treatment of a low arch under lateral load was made
by Chen; Hsu and Pian. In the latter case axial compressive stress is de-
veloped when the arch deforms inward.

All of the previously described plastic theories apply to small deflections
in that geometrical nonlinearities are excluded; and in addition, they make
further simplifying assumptions, either neglecting elastic effects by assuming
rigid-plastic behaviour, or considering only infinitesimal deflections for which
the axial (membrane) stress is negligible.

Extension to large deformations involves not only the introduction of
axial (membrane) stresses but additional nonlinearities caused by the geo-
metrical effects. The resultant equations require numerical solution. It was
decided to retain elastic effects in this analysis since certain evidence was
found to suggest that the energy stored in elastic strain in certain deformed
shell configurations is not negligible. In particular an appreciable amount of
energy appears to be stored in elastic strain in circular cylindrical and
spherical shells when these have been deformed to the order of half the radius,
as may be shown by cutting the shell at some convenient location and measur-
ing the work required to close the gap.

The method of solution requires setting the equation of motion for the
shell, written for large deflections, together with the stress-strain relations,
in finite difference form. The resulting initial value problem is solved,
subject to the boundary conditions describing the constraints on the shell, The
load may be introduced as a varying boundary condition if the loading is of
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relatively long duration. Alternatively if the load duration is very short, and
the structure does not deform appreciably during the time of load application,
the load may be characterised as an impulse, giving rise to an initial velocity
distribution in the shell.

Initially only cylindrical shells (rings) are being considered, thus elimin-
ating one space dimension. The ring need not be initially circular. The shell
may also be open ended, with appropriate end constraints, and therefore
equivalent to a curved beam.

The equilibrium equation in finite difference form may be described in
physical terms as follows. The ring is considered to be composed of a
number of links joined by hinges. The links are assumed rigid in bending but
elastic-plastic in extension. The hinges are considered to be inextensible,
but elastic-plastic in bending. The mass of the ring is divided into discrete
masses concentrated at the hinges. (Figure 3.)

As in the finite-deflection analysis of Symonds and Mentel, mentioned
previously, there is an interaction between bending moment and axial force
at the yield condition. For the elastic-perfectly plastic stress-strain relation
used here, the interaction equation cannot be written simply, for a rec-
tangular cross section. Particular difficulty is experienced when stress
reversals occur. The difficulties are circumvented by idealising the cross
section into an I beam (or sandwich plate) of equivalent force and moment
carrying capacity. The flanges are considered to behave in an elastic-
perfectly plastic manner, and a relatively simple relation between extensional
strain and curvature, and axial stress and moment, can be found.

Since stress reversals may occur, and unloading will occur elastically, a
multivalued relation results, the correct relation depending on the previous
loading history. It is therefore necessary to provide the correct logic in the
program to keep track of the loading history, in order to choose the correct
relation between the axial stress and strain, and the moment and curvature.

Preliminary results for the case of a beam subjected to a uniform initial
velocity indicate that traveling hinges are formed, as in the rigid-plastic
case of Lee and Symonds. It is anticipated that the program will give insight
into the failure modes to be expected in various configurations, and information
about the relative amounts of energy absorbed in elastic and plastic deformation.
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Figure 3, Finite difference model for shell
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MOTION OF AN ELASTIC HALF-SPACE

Dr. C. M, Ablow
Dr. Roy C. Alverson
Stanford Research Institute

Underground shelters are designed to withstand the motion of the earth
under blast loadings caused by explosions on or above the earth's surface.

A first approximation to that motion is obtained by computing the small
motions of an isotropic elastic half space under circularly symmetric applied
tractions. Features of the motion of major importance are preserved by a
computing method which accurately predicts the strength and time of arrival
of the first seismic shock. Such a method is at hand when shear and com-
pressional wave motions are separated and independent variables are constant
on wave fronts, i.e. when characteristic coordinates are introduced.

For axisymmetric motions of the elastic half space a cylindrical co-
ordinate system (r, ¥,z) is appropriate. It is assumed that there is no ro-
tation about the axis so that all functions appearing are independent of ¥, It
is then known! that the equations of motion and of Hook's law may be reduced
to the solution of two equations for two potential functions ¢ and €, function

© determining the compression and function ¢ the shear:

2
P/ @

+
Crr v 0/T Y0,

2
0 * e T+ 8 _-0/r

2
rr E’tl:/ﬁ

where a?‘ a (XA +2u)/p, BZ = b/p, M\ and 1 are the Lame elastic parameters,
and p is the density. Although the reduction to the above form is carried
through in the reference only for constant A\, p, p, the same manipulations
are permissible if A varies as a function of z. Thus the present analysis
holds for an earth of constant density and shear wave speed but compression-
al wave speed varying with depth. Displacements in the radial direction, u,

and in the axial direction, w, are determined by o and € to be

u-q)r-ez, w:mz+er+9/r.

1 W. M., Ewing, W. S. Jardetzky, and F. Press, Elastic Waves in Layered
Media, McGraw Hill, New York, 1957, Chapter I
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If the surfaces in (r, z, t) space on which function f is constant are shear
wave {ronts then f is a solution of the characteristic equation

2
z

A LR I

Fundamental shear wave front surfaces are the right circular cones with
arbitrary vertex, axis parallel to the time axis, and half vertex angle arc
ctn f. It may be shown that any shear wave front is an envelope of such
cones. For the characteristic coordinate surface c = 0 there was taken the
envelope of cones with vertices on the line marking the leading edge of the
disturbance on z = 0, the surface of the earth, The location of ¢ = 0 in

(r, z, t) space marks the progress of the initial shear disturbance throughout
the medium.

The two other characteristic coordinate planes a = 0 and b = 0 were
taken as the surfaces representing plane waves parallel to the surface of the
earth, being at that surface at time zero, and, respectively, going out into
the earth or returning from the depths. Thus a = 0 is one planar envelope of
the cones with vertices on the r-axis in (r, z, t) space while b = 0 is their
other planar envelope.

The same definitions give the a = 0, b « 0, and c = 0 characteristic sur-
faces for the compressional wave equation, except that the variability of a
with depth distorts the right circular cones into surfaces of somewhat similar
shape called conoids.

To obtain a complete coordinate system in (r, z, t) space, the surface
C =« k was taken as the c =« 0 surface moved k units parallel to itself in the

direction of the t-axis, and similarly for the other coordinates. Analytically,
if f(r, z, t) is that solution of the characteristic equation for which f(r, z, t) =
0 represents the c = 0 surface, then the equation for c = k was taken to be
f(r, z, t-k) = O.

It is evident that there is a high degree of arbitrariness in the choice of
characteristic coordinate system., The choice made above makes coordinate
planes of the initial compressional and shear wave fronts and also provides
simple plane surfaces in characteristic space for the surfaces r « 0 and
z = 0 on which boundary conditions are applied as well as the surfaces
t « constant on which the computed output is conveniently displayed. Further,
on the boundary z « 0, where compressional and shear waves satisfy combined
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conditions, one has a = a, b = b, and c « ¢ so that there is no interpolation

problem.
Characteristic surface 1
Physical surface for compression for shear
Initial wave c=0  c=0
r=0 a=zCc ;. = E
z=0 azb E = B
t-tl a+b=2t1 a+5-2t1
Setting
Q)a s A, mb ] B, (pc ] C.
9;- A. 95 = B, and eE = C

permits the second-order potential equations to be replaced by the first-

order systems

4A.b + Z(acz + l)Ac -2(acz - I)Bc - GZVZCC «0

B . BC. Cb|

and
- - < - e 2 2-= 2 2
4AB+ Z(BCZ"’ I)AE - Z(Bcz- 1)‘35 -B"gcC+876/r" a0,
As -B; ‘' B‘ .CG

where the first set of equations replaces the potential equation for the di-
latational waves and the second set replaces the potential equation for the
shear waves. In these equations Vzc stands for Corr + cr/r + oz’ and it,
as well as the other quantities appearing, needs to be expressed in the char-
acteristic variables before the integrations can begin,

Finite difference approximations to the differential equations have been
written using a cubical lattice in each characteristic coordinate system. As
is to be expected with a hyperbolic system in characteristic form, the equa-
tions are explicit, the solution is obtained by a process of marching through
the nodes of the lattice, and stability of this process is assured.
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The initial wave fronts, being coordinate surfaces, are sharply defined
in the finite difference calculation. No jump condition is needed across the
wave front as the proper discontinuity is preserved in the finite difference
forms.

The finite difference computation will smear sharp loading or unloading
waves behind the initial front unless they fall along a characteristic co-
ordinate surface, i.e., are plane waves parallel to the surface of the earth
or are waves of the same speed and extent as the initial wave delayed in time,

The main disadvantage of the characteristic method is that three co-
ordinate systems need to be carried along together, (r, z, t), (a, b, ¢), and
(a, B, c).

Displacements, velocities, and stresses in three different models of the
earth under airburst loading are being computed and will appear in forth-
coming reports. The three models all consider the earth as an isotropic,
elastic, half space. In the first model the half space is homogeneous, in
the second it is homogeneous with a homogeneous overburden, and in the
third the compressional wave speed varies linearly with depth.
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GENERAL COMMENTS ON
NUMERICAL INTEGRATION SCHEMES

Dr. John G. Trulio
Lawrence Radiation Laboratory

With regard to the numerical integration errors inherent in the von
Neumann-Richtmyer equations, and the effect of these errors in spall calcula-
tions,* I would like to make the following comments,

First, as stated, the linear Q has the effect of eliminating oscillations be-
hind a shock. It introduces much more damping than the quadratic Q. When
velocity differences from zone to zone are not large, squaring them tends to
produce Q's so small as to be ineffective for damping oscillations in density,
etc.

However, a basic problem in describing rarefactions is that any signal
which does not move with the velocity of the grid will diffuse. This appears in
the rounding of the head of a rarefaction wave, and throws the timing off in
rarefaction interaction problems. For most problems this is not a very im-
portant effect, However, it is important in any code calculation of the depth
of spall, which is one of the main jobs of the (Boeing) code,

If a shock arrives at a free surface, the head of the reflected rarefaction
wave may be 6 to 8 zones deeper in the material than it should be. (The
error in the position of the rarefaction head is, of course, characterized by
a fixed number of zones, and not a fixed distance,) An error of 6 or 8 zones
is not serious if there are 600 zones in the spalled piece, but there is ordin-
arily a limit to the number of zones in these problems — a practical limit in
calculation time, Also, a method which requires on the order of 1, 000 zones
to produce an acceptable solution to a one-dimensional problem is perhaps not
the right method to use on the problem. For that reason, other methods are
being investigated.

The various numerical integration procedures have application to a series
of experiments which have been, and are being, carried out to investigate the

*Butler, Guuaing, Jr., and Young, Daniel M., On the Treatment of Rarefaction
Using a Dissipative Hydrodynamics Code

Wilkins, Mark, Calculation of Spall Based on a One-Dimensional Model
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mechanism of the spall process. The purpose of the experiments is to de-
termine whether or not the spall mechanism is time dependent, The experi-
ments are based on the scaling laws of hydrodynamics, as described in the

" proceedings of last year's meetings (AFSWC-TR-60-12). In each experiment,
one plate is driven at another plate, The absolute plate thicknesses are varied
from experiment to experiment, keeping constant the ratio of plate thicknesses
and the relative velocity of the plates before impact. Then the pressure dis-
tribution in the plates is the same in each experiment at corresponding positions
and times, Therefore, if there is no delay time to fracture, one should observe
threshold spali for the same relative velocity of the plates, regardless of their
absolute thicknesses. So far, this does not seem to be the case, although we
have drawn no firm conclusion as yet, Several sets of experiments have been
done, for three or four plate thickness ratios. Results have been obtained both
by exploding foil and air gun techniques; they agree rather closely.

If the spall mechanism is time dependent, then, in order to calculate the
depth of spall, etc., as part of the problem of motion, it will be necessary to
build into the code the experimental delay time to fracture, as a function of the
applied stress. For stresses and strains outside the linear elastic range, the
deduction of this delay time from the experimental data leads to the further
problem of determining the stress-strain relation for large tensile stresses,

If spall occurs instantly at a fixed tensile stress, the appropriate code modifi-
cation is much simpler. In either case, a quantitative empirical (or semi-
empirical) account of one-dimensional spall will result from experiements of
the kind described. A technique for integrating the equations of motion is
therefore acceptable only if it allows us to make full use of this knowledge to
predict the occurrence of spall, the depth of spall, and other details of the
spall process. On this basis, the equations of von Neumann and Richtmyer,
unmodified, are inadequate,

I would like to comment also on an accuracy limitation inherent in any
numerical scheme which integrates the hydrodynamic equations by stepwise
advances in time. Many attempts have been made to increase the accuracy of
the equations by "high-order differencing.' That is, the difference analogs
of the hydrodynamic equations are written in such a way that the error in-
troduced in a dependent variable in a single timestep is of high order in the
sense of a Taylor's Series expansion in powers of the space- and time-steps,
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Efforts in this direction have had very limited success to my knowledge. There
is, I think, a simple and basic reason for this: quite apart from shocks and
contact discontinuities, the solutions of the equations of motion are not analytic
for flows of even moderate complexity. For example, in one-dimensional
motions of practical interest, the x - t plane is criss-crossed by curves across
which the first derivatives of the sound speed or particle velocity with respect
to x or t are discontinuous, Then the introduction of high-order differences
into the difference equations can actually bring about a decrease in this accuracy
of the equations, because the derivatives to which these differences tend in the
limit of fine zoning are infinite at various points in the flow, Although the
truncation error in a single time-step is reduced at most points by high-order
differencing, the error introduced at the relatively few points on the singular
lines of the flow can more than offset the gain in accuracy elsewhere, It seems
that second-order accuracy is about the most that can or should be asked of a
general purpose hydrodynamic code which operates through stepwise advances
in time. To get around this difficulty, and thereby write rapidly convergent
difference equations, one must see to it that differences are never taken across
singular surfaces of a flow in the space-time continuum. Since the singular
surfaces are characteristic surfaces (apart from shocks and contact discon-
tinuities), the difficulty is overcome by using a set of characteristic coor-
dinates as independent variables. This, it seems to me, is the basic reason for
the much more rapid convergence obtained by differencing the equations in
characteristic form. However, the use of the characteristic equations for
numerical purposes has its own difficulties, especially in the treatment of
shocks and contact discontinuities, and in two or three space dimensions,

Since the flow of a compressible fluid is a problem in wave motion

(although nonlinear), it is natural to examine the question of accuracy from the
point of view of a Fourier expansion as well as a Taylor's Series. Along these
lines, the simple problem of linear wave propagation relative to a coordinate
mesh has been studied. For concreteness, the motion can be thought of as the
uniform translation of a bar of material with variable density and zero pressure,
through an Eulerian grid. The difficulty is that the density is known basically

at the Eulerian zone centers, while the mass flux needed to calculate changes

in density must be defined at the zone boundaries. There are many ways in
which the mass flux terms can be calculated from the basic densities, each
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corresponding to a particular construction of a complete density profile from
the basic discrete density field. Apart from some trivial cases, different
definitions of the mass flux will produce different cycle-by-cycle density
changes, Thus, instead of the correct undisturbed propagation of a density
profile, the density profile will be distorted in the numerical calculations. It
is worth noting that this transport problem appears whenever a disturbance
propagates at a finite speed relative to the coordinate system used to describe
it. In a Lagrangian frame, the problem arises for sound wave propagation,

One simple definition of the density used to calculate the mass flux at a
zone boundary is the so-called '"backward'' definition, i. e., take the nearest
zone-centered density in the direction corresponding to the tail of the velocity
vector at the zone boundary. If this definition is used, it is found that the
amplitude of an 8-zone sine wave decays by a factor of 10 by the time the wave
has travelled two or three wavelengths relative to the grid. A cycle-by-cycle
analysis of the results shows clearly why this rapid diffusion takes place; the
point will not be pursued here. The rate of diffusion decreases as more zones
are used per unit wavelength, so that the problem centers mainly on short
waves,

To do a better job with sine-wave propagation, another simple definition
of the transport density was adopted. This is the so-called ""centered'" defin-
ition, i.e., the zone-centered densities on either side of the zone boundary are
averaged (a small correction term is added for purposes of numerical stabil-
ity). With this definition, the 8-zone wave propagates with very little distortion
and no noticeable diffusion. However, if the density profile is a step function,
then the centered differencing scheme quickly leads to a train of large oscilla-
tions behind the step. The growth of these oscillations is easy to understand
by following the calculation time-step by time-step. The initial spurious dis-
turbance is a zone-by-zone oscillation., Thus, the problem again centers on
the description of very short wavelengths. In a finite difference grid, the
shortest possible sine wave is spread over four zones. These shortest
waves, and even somewhat longer ones, are very coarsely defined, and do not
propagate correctly through the grid. To eliminate errors from this source,
an obvious stratagem is to suppress selectively all sinusoidal components
shorter than some predetermined wavelength, without disturbing the others,
One way this has been done, according to Dr. Cecil Leith at Livermore, is
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actually to Fourier analyze the whole signal and subtract out the unwanted
components., We have another scheme that accomplishes essentially the same
thing - waves spread over any particular numbers of zones can be damped out.
By suppressing the saw-toothed waves, all oscillations are wiped out but the
first two, for a uniformly translating step function. The amplitude of the first
oscillation behind the step is only slightly reduced, while the amplitude of the
second oscillation is about halved. By suppressing the waves whose half-width
is three zones or less, the second oscillation is eliminated, and the amplitude
of the first oscillation is reduced by about a factor of 5 (relative to the
amplitude characteristic of centered differencing with no suppression). At the
same time, sine waves propagate exactly as in the case of centered differenc-
ing. The method is therefore fairly satisfactory for wave propagation in a
finite grid.

The wave propagation study was undertaken largely to provide a means of
handling the transport terms which appear when the equations of motion are
written in a non-Lagrangian coordinate system. The treatment of transport
resulting from this study has been put into a code which describes the one-
dimensional linear motion of a single material with two Lagrangian boundaries,
one of which is not allowed to move. Between the boundaries at any given time
are a fixed number of zones of equal width, The grid is therefore neither
Lagrangian nor Eulerian; the zone boundaries do not move with the particle
velocity and they are not fixed in space, The most interesting problem run on
the code to date is that of a steady shock and its reflection from a rigid wall,
The error in the pressure behind the transmitted shock is about 50 percent
greater than the error using the von Neumann-Richtmyer equations. This is
actually better than it looks because the mass of a zone increases severalfold
in crossing the shock. Only as the shock nears the rigid wall do the zone
masses behind the shock approach their initial values; in the von Neumann-
Richtmyer scheme, the masses do not change at all, When the shock gets
close to the rigid wall, the zoning in the unshocked material is much finer than
at the start of the problem, and the error in the reflected shock pressure is
considerably less than in the von Neumann-Richtmyer case.

It can be seen that there are some very simple and fundamental problems
which have not been solved adequately in the past — at least in the sense that

the method of characteristics affords an adequate solution. In view of the
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machine time spent on hydrodynamic problems, it would appear that a good
deal more investigation of the difference equations themselves is in order,
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